28 research outputs found

    Text-to-4D dynamic scene generation

    Get PDF
    We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based model. The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment. MAV3D does not require any 3D or 4D data and the T2V model is trained only on Text-Image pairs and unlabeled videos. We demonstrate the effectiveness of our approach using comprehensive quantitative and qualitative experiments and show an improvement over previously established internal baselines. To the best of our knowledge, our method is the first to generate 3D dynamic scenes given a text description. Generated samples can be viewed at make-a-video3d.github.i

    Fully-Convolutional Siamese Networks for Object Tracking

    No full text
    The problem of arbitrary object tracking has traditionally been tackled by learning a model of the object’s appearance exclusively online, using as sole training data the video itself. Despite the success of these methods, their online-only approach inherently limits the richness of the model they can learn. Recently, several attempts have been made to exploit the expressive power of deep convolutional networks. However, when the object to track is not known beforehand, it is necessary to perform Stochastic Gradient Descent online to adapt the weights of the network, severely compromising the speed of the system. In this paper we equip a basic tracking algorithm with a novel fully-convolutional Siamese network trained end-to-end on the ILSVRC15 dataset for object detection in video. Our tracker operates at frame-rates beyond real-time and, despite its extreme simplicity, achieves state-of-the-art performance in multiple benchmarks

    Bayesian Face Revisited: A Joint Formulation

    No full text
    Abstract. In this paper, we revisit the classical Bayesian face recognition method by Baback Moghaddam et al. and propose a new joint formulation. The classical Bayesian method models the appearance difference between two faces. We observe that this “difference ” formulation may reduce the separability between classes. Instead, we model two faces jointly with an appropriate prior on the face representation. Our joint formulation leads to an EM-like model learning at the training time and an efficient, closed-formed computation at the test time. Onextensiveexperimental evaluations, our method is superior to the classical Bayesian face and many other supervised approaches. Our method achieved 92.4% test accuracy on the challenging Labeled Face in Wild (LFW) dataset. Comparing with current best commercial system, we reduced the error rate by 10%.
    corecore