3 research outputs found

    Understanding Hydrogen Adsorption in MIL-47-M (M = V and Fe) through Density Functional Theory

    Get PDF
    The present paper aims to investigate the role of open metal site metal-organic frameworks (MOFs) on hydrogen adsorptivity using periodic boundary condition (PBC) density functional theory (DFT). Hence, MIL-47-M (M = V and Fe) were selected and one hydrogen molecule adsorptivity was calculated in different orientations on them. Four different chemical sites were identified in every cluster section of these MOFs, and molecular hydrogen adsorption was studied in these sites. In these MOFs, V has fewer electrons than Fe in its valence layer. Results demonstrated that when dihedral angle of M-O-H-H is 0, the binding energy of hydrogen adsorption is higher than that in other orientations in both MILs (-26.16 and -19

    Calculation of hyperfine coupling constant and the g tensor of alanine radicals at different crystal temperatures based on Density Functional Theory (DFT)

    No full text
    In this paper, Density Functional Theory (DFT) was utilized for the calculation of the hyperfine coupling constant and the g tensor alanine radicals at different crystal temperatures. The cluster approach was used for considering the effects of crystal environment. In the cluster approach, the careful selection of the cluster size is very important for the geometry structure of alanine and the EPR parameters of alanine radicals. The geometry structure of alanine and the EPR parameters of alanine radicals showed a good agreement with the experiment data when 6 alanine molecules had hydrogen bonds with the central alanine or alanine radicals. Further, bigger clusters could even lead to an incorrect description of the geometry structure of alanine and EPR parameters of alanine radicals in the condensed phase
    corecore