11 research outputs found

    Longitudinal and polar MOKE magnetometry of magnetoresistive cobalt thin films prepared by thermal evaporation

    Get PDF
    Cobalt films of thickness 21, 29 and 68 nm were prepared by thermal evaporation with a deposition rate around 0.3 nm/s. Their hysteresis loops from longitudinal and polar magneto-optic Kerr effect (MOKE) magnetometry differed from typical characteristics of uniaxial magnetic anisotropy but still indicated the preference of in-plane anisotropy over perpendicular anisotropy. The longitudinal hysteresis loop of the 68 nm-thick film was decidedly in a transcritical state signified by an enhanced coercive field. Changing the angle (θ) between the 2500 Oe-magnetic field and the current gave rise to the change in electrical resistance (Rθ) of 29 nm-thick film and the plot between Rθ and cos2θ could be linearly fitted. The changes in resistance due to this anisotropic magnetoresistance (AMR) effect ranged from -0.08 % (θ = 90º) to +0.04 % (θ = 0º)
    corecore