142 research outputs found

    Parisi States in a Heisenberg Spin-Glass Model in Three Dimensions

    Full text link
    We have studied low-lying metastable states of the ±J\pm J Heisenberg model in two (d=2d=2) and three (d=3d=3) dimensions having developed a hybrid genetic algorithm. We have found a strong evidence of the occurrence of the Parisi states in d=3d=3 but not in d=2d=2. That is, in LdL^d lattices, there exist metastable states with a finite excitation energy of ΔE∼O(J)\Delta E \sim O(J) for L→∞L \to \infty, and energy barriers ΔW\Delta W between the ground state and those metastable states are ΔW∼O(JLθ)\Delta W \sim O(JL^{\theta}) with θ>0\theta > 0 in d=3d=3 but with θ<0\theta < 0 in d=2d=2. We have also found droplet-like excitations, suggesting a mixed scenario of the replica-symmetry-breaking picture and the droplet picture recently speculated in the Ising SG model.Comment: 4 pages, 6 figure

    A New Method to Calculate the Spin-Glass Order Parameter of the Two-Dimensional +/-J Ising Model

    Full text link
    A new method to numerically calculate the nnth moment of the spin overlap of the two-dimensional ±J\pm J Ising model is developed using the identity derived by one of the authors (HK) several years ago. By using the method, the nnth moment of the spin overlap can be calculated as a simple average of the nnth moment of the total spins with a modified bond probability distribution. The values of the Binder parameter etc have been extensively calculated with the linear size, LL, up to L=23. The accuracy of the calculations in the present method is similar to that in the conventional transfer matrix method with about 10510^{5} bond samples. The simple scaling plots of the Binder parameter and the spin-glass susceptibility indicate the existence of a finite-temperature spin-glass phase transition. We find, however, that the estimation of TcT_{\rm c} is strongly affected by the corrections to scaling within the present data (L≤23L\leq 23). Thus, there still remains the possibility that Tc=0T_{\rm c}=0, contrary to the recent results which suggest the existence of a finite-temperature spin-glass phase transition.Comment: 10 pages,8 figures: final version to appear in J. Phys.

    Finite Size Scaling Analysis of Exact Ground States for +/-J Spin Glass Models in Two Dimensions

    Full text link
    With the help of EXACT ground states obtained by a polynomial algorithm we compute the domain wall energy at zero-temperature for the bond-random and the site-random Ising spin glass model in two dimensions. We find that in both models the stability of the ferromagnetic AND the spin glass order ceases to exist at a UNIQUE concentration p_c for the ferromagnetic bonds. In the vicinity of this critical point, the size and concentration dependency of the first AND second moment of the domain wall energy are, for both models, described by a COMMON finite size scaling form. Moreover, below this concentration the stiffness exponent turns out to be slightly negative \theta_S = -0.056(6) indicating the absence of any intermediate spin glass phase at non-zero temperature.Comment: 7 pages Latex, 5 postscript-figures include

    Numerical Study of Competing Spin-Glass and Ferromagnetic Order

    Full text link
    Two and three dimensional random Ising models with a Gaussian distribution of couplings with variance JJ and non-vanishing mean value J0J_0 are studied using the zero-temperature domain-wall renormalization group (DWRG). The DWRG trajectories in the (J0,JJ_0,J) plane after rescaling can be collapsed on two curves: one for J0/J>rcJ_0/J > r_c and other for J0/J<rcJ_0/J < r_c. In the first case the DWRG flows are toward the ferromagnetic fixed point both in two and three dimensions while in the second case flows are towards a paramagnetic fixed point and spin-glass fixed point in two and three dimensions respectively. No evidence for an extra phase is found.Comment: a bit more data is taken, 5 pages, 4 eps figures included, to appear in PR

    β-delayed neutron and γ-ray spectroscopy of ^<17>C utilizing spin-polarized ^<17>B

    Full text link
    Excited states in ^C were investigated through the measurement of β -delayed neutrons and γ rays emitted in the β decay of ^B. In the measurement, three negative-parity states and two inconclusive states were identified in ^C above the neutron threshold energy, and seven γ lines were identified in a β -delayed multiple neutron emission of the ^Bβ decay. From these transitions, the β-decay scheme of ^B was determined. In particular, a de-excitation 1766-keVγ line from the first excited state of ^C was observed in coincidence with the emitted β-delayed neutrons, and this changes the previously reported β-decay scheme of ^B and level structure of ^C. In the present work, the β-NMR technique is combined with the β-delayed particle measurements using a fragmentation-induced spin-polarized ^B beam. This new scheme allows us to determine the spin parity of β-decay feeding excited states based on the difference in the discrete β-decay asymmetry parameters, provided the states are connected through the Gamow-Teller transition. In this work, I^π=1/2^−, 3/2^−, and (5/2^−) are assigned to the observed states at E_x = 2.71(2), 3.93(2), and 4.05(2) MeV in ^C, respectively
    • …
    corecore