15,770 research outputs found

    Edge Enhancement Investigations by Means of Experiments and Simulations

    Get PDF
    Standard neutron imaging procedures are based on the “shadow” of the transmitted radiation, attenuated by the sample material. Under certain conditions significant deviations from pure transmission can be found in the form of enhancement or depression at the edges of the samples. These effects can limit the quantification process in the related regions. Otherwise, an enhancement and improvement of visibility can be achieved e.g. in defect analysis. In systematic studies we investigated the dependency of these effects on the specific material (mainly for common metals), such as the sample-to-detector distance, the beam collimation, the material thickness and the neutron energy. The beam lines ICON and BOA at PSI and ANTARES at TU München were used for these experiments due to their capability for neutron imaging with highest possible spatial resolution (6.5 to 13.5 micro-meter pixel size, respectively) and their cold beam spectrum. Next to the experimental data we used a McStas tool for the description of refraction and reflection features at edges for comparison. Even if minor contributions by coherent in-line propagation phase contrast are underlined, the major effect can be described by refraction of the neutrons at the sample-void interface. Ways to suppress and to magnify the edge effects can be derived from these findings.Fil: Lehmann, E.. Paul Scherrer Institut; SuizaFil: Schulz, M.. Technische Universitat Munchen; AlemaniaFil: Wang, Y.. China Insititute of Atomic Energy; ChinaFil: Tartaglione, Aureliano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Auroral magnetosphere-ionosphere coupling: A brief topical review

    Get PDF
    Auroral arcs result from the acceleration and precipitation of magnetospheric plasma in narrow regions characterized by strong electric fields both perpendicular and parallel to the earth's magnetic field. The various mechanisms that were proposed for the origin of such strong electric fields are often complementary Such mechanisms include: (1) electrostatic double layers; (2) double reverse shock; (3) anomalous resistivity; (4) magnetic mirroring of hot plasma; and (5) mapping of the magnetospheric-convection electric field through an auroral discontinuity

    Global dust model intercomparison in AeroCom phase I

    Get PDF
    This study presents the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations related to desert dust aerosols, their direct radiative effect, and their impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström exponent (AE), coarse mode AOD and dust surface concentrations are included to extend the assessment of model performance and to identify common biases present in models. These data comprise a benchmark dataset that is proposed for model inspection and future dust model development. There are large differences among the global models that simulate the dust cycle and its impact on climate. In general, models simulate the climatology of vertically integrated parameters (AOD and AE) within a factor of two whereas the total deposition and surface concentration are reproduced within a factor of 10. In addition, smaller mean normalized bias and root mean square errors are obtained for the climatology of AOD and AE than for total deposition and surface concentration. Characteristics of the datasets used and their uncertainties may influence these differences. Large uncertainties still exist with respect to the deposition fluxes in the southern oceans. Further measurements and model studies are necessary to assess the general model performance to reproduce dust deposition in ocean regions sensible to iron contributions. Models overestimate the wet deposition in regions dominated by dry deposition. They generally simulate more realistic surface concentration at stations downwind of the main sources than at remote ones. Most models simulate the gradient in AOD and AE between the different dusty regions. However the seasonality and magnitude of both variables is better simulated at African stations than Middle East ones. The models simulate the offshore transport of West Africa throughout the year but they overestimate the AOD and they transport too fine particles. The models also reproduce the dust transport across the Atlantic in the summer in terms of both AOD and AE but not so well in winter-spring nor the southward displacement of the dust cloud that is responsible of the dust transport into South America. Based on the dependency of AOD on aerosol burden and size distribution we use model bias with respect to AOD and AE to infer the bias of the dust emissions in Africa and the Middle East. According to this analysis we suggest that a range of possible emissions for North Africa is 400 to 2200 Tg yr-1 and in the Middle East 26 to 526 Tg yr-1

    Density-matrix renormalization group study of pairing when electron-electron and electron-phonon interactions coexist: effect of the electronic band structure

    Full text link
    Density-matrix renormalization group is used to study the pairing when both of electron-electron and electron-phonon interactions are strong in the Holstein-Hubbard model at half-filling in a region intermediate between the adiabatic (Migdal's) and antiadiabatic limits. We have found: (i) the pairing correlation obtained for a one-dimensional system is nearly degenerate with the CDW correlation in a region where the phonon-induced attraction is comparable with the electron-electron repulsion, but (ii) pairing becomes dominant when we destroy the electron-hole symmetry in a trestle lattice. This provides an instance in which pairing can arise, in a lattice-structure dependent manner, from coexisting electron-electron and electron-phonon interactions.Comment: 4 pages, 3 figures; to appear in Phys. Rev. Let

    Quantum Monte Carlo simulations of a particle in a random potential

    Full text link
    In this paper we carry out Quantum Monte Carlo simulations of a quantum particle in a one-dimensional random potential (plus a fixed harmonic potential) at a finite temperature. This is the simplest model of an interface in a disordered medium and may also pertain to an electron in a dirty metal. We compare with previous analytical results, and also derive an expression for the sample to sample fluctuations of the mean square displacement from the origin which is a measure of the glassiness of the system. This quantity as well as the mean square displacement of the particle are measured in the simulation. The similarity to the quantum spin glass in a transverse field is noted. The effect of quantum fluctuations on the glassy behavior is discussed.Comment: 23 pages, 7 figures included as eps files, uses RevTeX. Accepted for publication in J. of Physics A: Mathematical and Genera

    Refining Chandra/ACIS Subpixel Event Repositioning Using a Backside Illuminated CCD Model

    Get PDF
    Subpixel event repositioning (SER) techniques have been demonstrated to significantly improve the already unprecedented spatial resolution of Chandra X-ray imaging with the Advanced CCD Imaging Spectrometer (ACIS). Chandra CCD SER techniques are based on the premise that the impact position of events can be refined, based on the distribution of charge among affected CCD pixels. ACIS SER models proposed thus far are restricted to corner split (3- and 4-pixel) events, and assume that such events take place at the split pixel corners. To improve the event counting statistics, we modified the ACIS SER algorithms to include 2-pixel split events and single pixel events, using refined estimates for photon impact locations. Furthermore, simulations that make use of a high-fidelity backside illuminated (BI) CCD model demonstrate that mean photon impact positions for split events are energy dependent leading to further modification of subpixel event locations according to event type and energy, for BI ACIS devices. Testing on Chandra CCD X-ray observations of the Orion Nebula Cluster indicates that these modified SER algorithms further improve the spatial resolution of Chandra/ACIS, to the extent that the spreading in the spatial distribution of photons is dominated by the High Resolution Mirror Assembly, rather than by ACIS pixelization.Comment: 23 pages, 8 figures, 2nd version, submitted to Ap

    Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity of one-dimensional quarter-filled spin-density-wave conductors

    Full text link
    We study spin fluctuations in quarter-filled one-dimensional spin-density-wave systems in presence of short-range Coulomb interactions. By applying a path integral method, the spin-wave velocity is calculated as a function of on-site (U), nearest (V) and next-nearest (V_2) neighbor-site interactions. With increasing V or V_2, the pure spin-density-wave state evolves into a state with coexisting spin- and charge-density waves. The spin-wave velocity is reduced when several density waves coexist in the ground state, and may even vanish at large V. The effect of dimerization along the chain is also considered.Comment: REVTeX, 11 pages, 9 figure

    Discovery of a binary AGN in the ultraluminous infrared galaxy NGC 6240 using Chandra

    Full text link
    Ultraluminous infrared galaxies (ULIRGs) are outstanding due to their huge luminosity output in the infrared, which is predominantly powered by super starbursts and/or hidden active galactic nuclei (AGN). NGC 6240 is one of the nearest ULIRGs and is considered a key representative of its class. Here, we report the first high-resolution imaging spectroscopy of NGC 6240 in X-rays. The observation, performed with the ACIS-S detector aboard the Chandra X-ray observatory, led to the discovery of two hard nuclei, coincident with the optical-IR nuclei of NGC 6240. The AGN character of both nuclei is revealed by the detection of absorbed hard, luminous X-ray emission and two strong neutral Fe_K_alpha lines. In addition, extended X-ray emission components are present, changing their rich structure in dependence of energy. The close correlation of the extended emission with the optical Halpha emission of NGC 6240, in combination with the softness of its spectrum, clearly indicates its relation to starburst-driven superwind activity.Comment: ApJ Letters in press, 7 colour figures included; preprint and related papers on NGC 6240 also available at http://www.xray.mpe.mpg.de/~skomossa

    Evaluation of black carbon estimations in global aerosol models

    Get PDF
    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) retrievals from AERONET and Ozone Monitoring Instrument (OMI) and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models
    corecore