74 research outputs found

    Control of Cell Migration and Inflammatory Mediators Production by CORM-2 in Osteoarthritic Synoviocytes

    Get PDF
    BackgroundOsteoarthritis (OA) is the most widespread degenerative joint disease. Inflamed synovial cells contribute to the release of inflammatory and catabolic mediators during OA leading to destruction of articular tissues. We have shown previously that CO-releasing molecules exert anti-inflammatory effects in animal models and OA chondrocytes. We have studied the ability of CORM-2 to modify the migration of human OA synoviocytes and the production of chemokines and other mediators sustaining inflammatory and catabolic processes in the OA joint.Methodology/Principal FindingsOA synoviocytes were stimulated with interleukin(IL)-1β in the absence or presence of CORM-2. Migration assay was performed using transwell chambers. Gene expression was analyzed by quantitative PCR and protein expression by Western Blot and ELISA. CORM-2 reduced the proliferation and migration of OA synoviocytes, the expression of IL-8, CCL2, CCL20, matrix metalloproteinase(MMP)-1 and MMP-3, and the production of oxidative stress. We found that CORM-2 reduced the phosphorylation of extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase1/2 and to a lesser extent p38. Our results also showed that CORM-2 significantly decreased the activation of nuclear factor-κB and activator protein-1 regulating the transcription of chemokines and MMPs in OA synoviocytes.Conclusion/SignificanceA number of synoviocyte functions relevant in OA synovitis and articular degradation can be down-regulated by CORM-2. These results support the interest of this class of agents for the development of novel therapeutic strategies in inflammatory and degenerative conditions

    Structure and function of the Ts2631 endolysin of <i>Thermus scotoductus</i> phage vB_Tsc2631 with unique N-terminal extension used for peptidoglycan binding

    Get PDF
    Abstract To escape from hosts after completing their life cycle, bacteriophages often use endolysins, which degrade bacterial peptidoglycan. While mesophilic phages have been extensively studied, their thermophilic counterparts are not well characterized. Here, we present a detailed analysis of the structure and function of Ts2631 endolysin from thermophilic phage vB_Tsc2631, which is a zinc-dependent amidase. The active site of Ts2631 consists of His30, Tyr58, His131 and Cys139, which are involved in Zn2+ coordination and catalysis. We found that the active site residues are necessary for lysis yet not crucial for peptidoglycan binding. To elucidate residues involved in the enzyme interaction with peptidoglycan, we tested single-residue substitution variants and identified Tyr60 and Lys70 as essential residues. Moreover, substitution of Cys80, abrogating disulfide bridge formation, inactivates Ts2631, as do substitutions of His31, Thr32 and Asn85 residues. The endolysin contains a positively charged N-terminal extension of 20 residues that can protrude from the remainder of the enzyme and is crucial for peptidoglycan binding. We show that the deletion of 20 residues from the N-terminus abolished the bacteriolytic activity of the enzyme. Because Ts2631 exhibits intrinsic antibacterial activity and unusual thermal stability, it is perfectly suited as a scaffold for the development of antimicrobial agents

    Inhibition of platelet aggregation by carbon monoxide-releasing molecules (CO-RMs): comparison with NO donors

    Get PDF
    Carbon monoxide (CO) and CO-releasing molecules (CO-RMs) inhibit platelet aggregation in vitro. Herein, we compare the anti-platelet action of CORM-3, which releases CO rapidly (t½ 1 min), and CORM-A1, which slowly releases CO (t½ = 21 min). The anti-platelet effects of NO donors with various kinetics of NO release were studied for comparison. The effects of CO-RMs and NO donors were analyzed in washed human platelets (WP), platelets rich plasma (PRP), or whole blood (WB) using aggregometry technique. CORM-3 and CORM-A1 inhibited platelet aggregation in human PRP, WP, or WB, in a concentration-dependent manner. In all three preparations, CORM-A1 was more potent than CORM-3. Inhibition of platelets aggregation by CORM-A1 was not significantly affected by a guanylate cyclase inhibitor (ODQ) and a phosphodiesterase-5 inhibitor, sildenafil. In contrast, inhibition of platelet aggregation by NO donors was more potent with a fast NO releaser (DEA-NO, t½ = 2 min) than slow NO releasers such as PAPA-NO (t½ = 15 min) or other slow NO donors. Predictably, the anti-platelet effect of DEA-NO and other NO donors was reversed by ODQ while potentiated by sildenafil. In contrast to NO donors which inhibit platelets proportionally to the kinetics of NO released via activation of soluble guanylate cyclase (sGC), the slow CO-releaser CORM-A1 is a superior anti-platelet agent as compared to CORM-3 which releases CO instantly. The anti-platelet action of CO-RMs does not involve sGC activation. Importantly, CORM-A1 or its derivatives representing the class of slow CO releasers display promising pharmacological profile as anti-platelet agents

    Carbon monoxide-Releasing Molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic ischemia-reperfusion injury (I/Ri) is a serious complication occurring during liver surgery that may lead to liver failure. Hepatic I/Ri induces formation of reactive oxygen species, hepatocyte apoptosis, and release of pro-inflammatory cytokines, which together causes liver damage and organ dysfunction. A potential strategy to alleviate hepatic I/Ri is to exploit the potent anti-inflammatory and cytoprotective effects of carbon monoxide (CO) by application of so-called CO-releasing molecules (CORMs). Here, we assessed whether CO released from CORM-2 protects against hepatic I/Ri in a rat model.</p> <p>Methods</p> <p>Forty male Wistar rats were randomly assigned into four groups (n = 10). Sham group underwent a sham operation and received saline. I/R group underwent hepatic I/R procedure by partial clamping of portal structures to the left and median lobes with a microvascular clip for 60 minutes, yielding ~70% hepatic ischemia and subsequently received saline. CORM-2 group underwent the same procedure and received 8 mg/kg of CORM-2 at time of reperfusion. iCORM-2 group underwent the same procedure and received iCORM-2 (8 mg/kg), which does not release CO. Therapeutic effects of CORM-2 on hepatic I/Ri was assessed by measuring serum damage markers AST and ALT, liver histology score, TUNEL-scoring of apoptotic cells, NFkB-activity in nuclear liver extracts, serum levels of pro-inflammatory cytokines TNF-α and IL-6, and hepatic neutrophil infiltration.</p> <p>Results</p> <p>A single systemic infusion with CORM-2 protected the liver from I/Ri as evidenced by a reduction in serum AST/ALT levels and an improved liver histology score. Treatment with CORM-2 also up-regulated expression of the anti-apoptotic protein Bcl-2, down-regulated caspase-3 activation, and significantly reduced the levels of apoptosis after I/Ri. Furthermore, treatment with CORM-2 significantly inhibited the activity of the pro-inflammatory transcription factor NF-κB as measured in nuclear extracts of liver homogenates. Moreover, CORM-2 treatment resulted in reduced serum levels of pro-inflammatory cytokines TNF-α and IL-6 and down-regulation of the adhesion molecule ICAM-1 in the endothelial cells of liver. In line with these findings, CORM-2 treatment reduced the accumulation of neutrophils in the liver upon I/Ri. Similar treatment with an inactive variant of CORM-2 (iCORM-2) did not have any beneficial effect on the extent of liver I/Ri.</p> <p>Conclusions</p> <p>CORM-2 treatment at the time of reperfusion had several distinct beneficial effects on severity of hepatic I/Ri that may be of therapeutic value for the prevention of tissue damage as a result of I/Ri during hepatic surgery.</p

    Transcriptional Response of Zebrafish Embryos Exposed to Neurotoxic Compounds Reveals a Muscle Activity Dependent hspb11 Expression

    Get PDF
    Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sopfixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds

    Dopamine Transporter SPECT Imaging in Corticobasal Syndrome

    Get PDF
    evidence of preserved nigral neuronal density. imaging evidence of preserved nigral terminals have been recently described.In this multicenter study, we investigated presynaptic nigrostriatal function in 36 outpatients fulfilling clinical criteria for “probable corticobasal degeneration” (age 71±7.3 years; disease duration 3.9±1.6 years), 37 PD and 24 healthy control subjects using FP-CIT single photon emission computed tomography. Clinical, neuropsychological, and magnetic resonance imaging assessment was performed to characterize CBS patients. Linear discriminant analysis was used to categorize normal vs. pathological scans.FP-CIT binding reduction in patients with CBS was characterized by larger variability, more uniform reduction throughout the striatum and greater hemispheric asymmetry compared to PD. Moreover, there was no significant correlation between tracer uptake values and clinical features such as disease duration and severity. Despite all CBS subjects showed obvious bilateral extrapyramidal signs, FP-CIT uptake was found to be normal bilaterally in four CBS patients and only unilaterally in other four cases. Extensive clinical, neuropsychological and imaging assessment did not reveal remarkable differences between CBS subjects with normal vs. pathological FP-CIT uptake.Our findings support the hypothesis that extrapyramidal motor symptoms in CBS are not invariably associated with SNc neuronal degeneration and that supranigral factors may play a major role in several cases. CBS individuals with normal FP-CIT uptake do not show any clinical or cognitive feature suggesting a different pathology than CBD
    corecore