52 research outputs found

    Management of chest keloids

    Get PDF
    Keloid formation is one of the most challenging clinical problems in wound healing. With increasing frequency of open heart surgery, chest keloid formations are not infrequent in the clinical practice. The numerous treatment methods including surgical excision, intralesional steroid injection, radiation therapy, laser therapy, silicone gel sheeting, and pressure therapy underscore how little is understood about keloids. Keloids have a tendency to recur after surgical excision as a single treatment. Stretching tension is clearly associated with keloid generation, as keloids tend to occur on high tension sites such as chest region. The authors treated 58 chest keloid patients with surgical excision followed by intraoperative and postoperative intralesional steroid injection. Even with minor complications and recurrences, our protocol results in excellent outcomes in cases of chest keloids

    Expressions of Multiple Neuronal Dynamics during Sensorimotor Learning in the Motor Cortex of Behaving Monkeys

    Get PDF
    Previous studies support the notion that sensorimotor learning involves multiple processes. We investigated the neuronal basis of these processes by recording single-unit activity in motor cortex of non-human primates (Macaca fascicularis), during adaptation to force-field perturbations. Perturbed trials (reaching to one direction) were practiced along with unperturbed trials (to other directions). The number of perturbed trials relative to the unperturbed ones was either low or high, in two separate practice schedules. Unsurprisingly, practice under high-rate resulted in faster learning with more pronounced generalization, as compared to the low-rate practice. However, generalization and retention of behavioral and neuronal effects following practice in high-rate were less stable; namely, the faster learning was forgotten faster. We examined two subgroups of cells and showed that, during learning, the changes in firing-rate in one subgroup depended on the number of practiced trials, but not on time. In contrast, changes in the second subgroup depended on time and practice; the changes in firing-rate, following the same number of perturbed trials, were larger under high-rate than low-rate learning. After learning, the neuronal changes gradually decayed. In the first subgroup, the decay pace did not depend on the practice rate, whereas in the second subgroup, the decay pace was greater following high-rate practice. This group shows neuronal representation that mirrors the behavioral performance, evolving faster but also decaying faster at learning under high-rate, as compared to low-rate. The results suggest that the stability of a new learned skill and its neuronal representation are affected by the acquisition schedule.United States-Israel Binational Science FoundationIsrael Science FoundationIda Baruch FundRosetrees Trus
    • …
    corecore