14,273 research outputs found

    Above-threshold ionization photoelectron spectrum from quantum trajectory

    Full text link
    Many nonlinear quantum phenomena of intense laser-atom physics can be intuitively explained with the concept of trajectory. In this paper, Bohmian mechanics (BM) is introduced to study a multiphoton process of atoms interacting with the intense laser field: above-threshold ionization (ATI). Quantum trajectory of an atomic electron in intense laser field is obtained from the Bohm-Newton equation first and then the energy of the photoelectron is gained from its trajectory. With energies of an ensemble of photoelectrons, we obtain the ATI spectrum which is consistent with the previous theoretical and experimental results. Comparing BM with the classical trajectory Monte-Carlo method, we conclude that quantum potential may play a key role to reproduce the spectrum of ATI. Our work may present a new approach to understanding quantum phenomena in intense laser-atom physics with the image of trajectory.Comment: 10 pages, 3 figure

    Intermittent emission of particles from three coupled condensates in a one-dimensional lattice

    Full text link
    We investigate particle emission, driven by periodically modulating the interaction strength, from three coupled Bose-Einstein condensates in a one-dimensional lattice. Within perturbative analyses, which lead to the regimes of instabilities for different modes, we not only obtain two main frequencies, under which the system can emit a large particle jet, but also find that the emission is distinctly intermittent rather than continuous. The time evolution of the trapped particles exhibits a stair-like decay, and a larger drive induces a more significant intermittency. We further shed light on the dynamics of the stimulating process, and demonstrate that instead of a real suspension, the intermittency represents a build-up stage of the particles. The theoretical framework might be generalized, to the explorations on other multiple-condensate systems with analogous configurations and couplings.Comment: 7 pages, 10 figure

    Present status of mangrove crab (Scylla serrata (Forskal)) culture in China

    Get PDF
    The status of mangrove crab (Scylla serrata) culture in China and suggestions on how this may become an important sector in the place are presented

    A Critical Examination of Hypernova Remnant Candidates in M101. II. NGC 5471B

    Get PDF
    NGC 5471B has been suggested to contain a hypernova remnant because of its extraordinarily bright X-ray emission. To assess its true nature, we have obtained high-resolution images in continuum bands and nebular lines with the Hubble Space Telescope, and high-dispersion long-slit spectra with the Kitt Peak National Observatory 4-m echelle spectrograph. The images reveal three supernova remnant (SNR) candidates in the giant HII region NGC 5471, with the brightest one being the 77x60 pc shell in NGC 5471B. The Ha velocity profile of NGC 5471B can be decomposed into a narrow component (FWHM = 41 km/s) from the background HII region and a broad component (FWHM = 148 km/s) from the SNR shell. Using the brightness ratio of the broad to narrow components and the Ha flux measured from the WFPC2 Ha image, we derive an Ha luminosity of (1.4+-0.1)x10^39 ergs/s for the SNR shell. The [SII]6716,6731 doublet ratio of the broad velocity component is used to derive an electron density of ~700 cm^-3 in the SNR shell. The mass of the SNR shell is thus 4600+-500 Mo. With a \~330 km/s expansion velocity implied by the extreme velocity extent of the broad component, the kinetic energy of the SNR shell is determined to be 5x10^51 ergs. This requires an explosion energy greater than 10^52 ergs, which can be provided by one hypernova or multiple supernovae. Comparing to SNRs in nearby active star formation regions, the SNR shell in NGC 5471B appears truly unique and energetic. We conclude that the optical observations support the existence of a hypernova remnant in NGC 5471B.Comment: 27 pages, 9 figures, to appear in May 2002 issue of The Astronomical Journa
    • …
    corecore