18 research outputs found
Targeted fully 3D Monte Carlo reconstruction in SPECT
PCSV, présenté par Z. El Bitar, soumis aux proceedingsFully 3D Monte-Carlo (F3DMC) reconstruction consists in calculating a fully 3D object-specific system matrix using Monte-Carlo simulations and inverting it using an iterative approach. To reduce the large amount of disk space required by this approach, we derived a targeted F3DMC approach (TF3DMC) in which the volume to be reconstructed is irregularly sampled, so that pre-identified functional regions of interest are reconstructed using fine sampling while regions with non-specific activity or without any particular interest are coarsely sampled. This method was assessed using simulated and real SPECT data of a phantom filled with Tc99m. The GATE Monte-Carlo simulator was considered to simulate the phantom data and to calculate the system matrices needed for the reconstruction of the simulated and of the real SPECT data. Activity ratios measured in TF3DMC images were compared with those measured on F3DMC and OSEM images corrected for scatter, attenuation and detector response function. TF3DLMC yielded errors less than 10% in activity ratio estimates in hot regions, while errors with quantitative OSEM were between -21% and -3%. The space needed to store the system matrix was divided by a factor from 3.5 to 9.4 compared to F3DMC, for similar or even better accuracy in activity ratio estimates. These results suggest that TF3DMC can be made practical and outperforms F3DMC and OSEM in terms of quantitative accuracy
Non-Invasive Molecular Imaging of Fibrosis Using a Collagen-Targeted Peptidomimetic of the Platelet Collagen Receptor Glycoprotein VI
Background: Fibrosis, which is characterized by the pathological accumulation of collagen, is recognized as an important feature of many chronic diseases, and as such, constitutes an enormous health burden. We need non-invasive specific methods for the early diagnosis and follow-up of fibrosis in various disorders. Collagen targeting molecules are therefore of interest for potential in vivo imaging of fibrosis. In this study, we developed a collagen-specific probe using a new approach that takes advantage of the inherent specificity of Glycoprotein VI (GPVI), the main platelet receptor for collagens I and III. Methodology/Principal: Findings An anti-GPVI antibody that neutralizes collagen-binding was used to screen a bacterial random peptide library. A cyclic motif was identified, and the corresponding peptide (designated collagelin) was synthesized. Solid-phase binding assays and histochemical analysis showed that collagelin specifically bound to collagen (Kd 10−7 M) in vitro, and labelled collagen fibers ex vivo on sections of rat aorta and rat tail. Collagelin is therefore a new specific probe for collagen. The suitability of collagelin as an in vivo probe was tested in a rat model of healed myocardial infarctions (MI). Injecting Tc-99m-labelled collagelin and scintigraphic imaging showed that uptake of the probe occurred in the cardiac area of rats with MI, but not in controls. Post mortem autoradiography and histological analysis of heart sections showed that the labeled areas coincided with fibrosis. Scintigraphic molecular imaging with collagelin provides high resolution, and good contrast between the fibrotic scars and healthy tissues. The capacity of collagelin to image fibrosis in vivo was confirmed in a mouse model of lung fibrosis. Conclusion/Significance: Collagelin is a new collagen-targeting agent which may be useful for non-invasive detection of fibrosis in a broad spectrum of diseases.Psycholog
Evaluation of Glucose Uptake in Normal and Cancer Cell Lines by Positron Emission Tomography
To date, there is no definitive demonstration of the utility of positron emission tomography (PET) in studying glucose metabolism in cultured cell lines. Thus, this study was designed to compare PET to more standardized methods for the quantitative assessment of glucose uptake in nontransformed and transformed living cells and to validate PET for metabolic studies in vitro. Human colon and breast carcinoma cell lines and mouse embryo fibroblasts were evaluated for [ 18 F]fluorodeoxyglucose ([ 18 F]FDG) uptake by PET and autoradiography and 2-deoxyglucose (2-DG) incorporation by colorimetric assay and analyzed for the radiotoxic effects of [ 18 F]FDG and the expression levels of glucose transporters. Indeed, [ 18 F]FDG incorporation on PET was comparable to [ 18 F]FDG uptake by autoradiography and 2-DG incorporation by colorimetric assay, although radiotracer-based methods exhibited more pronounced differences between individual cell lines. As expected, these data correlated with glucose transporters 1 to 4 and hexokinase II expression in tumor cell lines and mouse fibroblasts. Notably, [ 18 F]FDG incorporation resulted in low apoptotic rates, with fibroblasts being slightly more sensitive to radiotracer-induced cell death. The quantitative analysis of [ 18 F]FDG uptake in living cells by PET represents a valuable and reproducible method to study tumor cell metabolism in vitro, being representative of the differences in the molecular profile of normal and tumor cell lines