62 research outputs found

    Calibrating a material model for AD995 alumina from plate impact VISAR profiles

    No full text
    Nous présentons une validation/calibration d'un modèle de matériau pour l'alumina AD995. Nous utilisons les résultats de cinq expériences d'impact de plaques symétrique menées par Grady [1], désignées CE 56 à 60. Notre modèle de matériau est semblable à celeu employé par Johnson et Holmquist [5]. Il a une courbe de rupture fragile pour le matériau sans endommagement, et une courbe d'écoulement pour le matériau ruiné (granuleux). La réponse iriscoplastique de matériau endommagé aux contraintes de cisaillement, au de la courbe d'écoulement quasistatique, est maxwellienne. Nous calibrons la réponse viscoplastique pour correspondre au test CE 58, puis vérifions la validité du modèle de matériau, en prédisant les résultats pour les quatre autres tests. Un assez bon accord est obtenu.We present a validation/calibration of a material model for AD995 alumina. We use five of Grady's symmetric impact test data designated CE56 to CE60. Our material model is similar to that employed by Johnson and Holmquist [5]. It has a fracture surface for the intact material, and a flow surface for the fractured (granular-like) material. The viscoplastic response of the fractured material to shear stresses beyond the quasistatic yield surface is Maxwellian. We calibrate the viscoplastic response to match test CE58, and then check the validity of the material model by predicting the results for the four other tests. Agreement is quite good

    Modelling dynamic compaction of porous materials with the overstress approach

    No full text

    Modeling Bauschingher's effect in planar impact

    No full text
    Bauschinger's effect (BE) was first noticed as a decrease in yield stress upon unloading from a plastic state in standard tension-compression tests. It was later established that BE is quite general in terms of materials and modes of loading. Generalizing, BE may be regarded as anisotropic plasticity (in stress space) caused by the plastic flow itself. BE was extensively researched as part of an ongoing effort to understand and model cyclic plasticity. Cyclic plasticity models are based on the concept of kinematic hardening, are usually very complex, and contain many material parameters to be calibrated from tests. Here we're concerned with modeling BE in dynamic situations, specifically planar impact tests. In these tests BE is manifested by the so called Quasi-Elastic (QE) response upon unloading from the shock plateau level. Our approach is based on ideas put forward since the 1930s. First we show that our model, which we call Effective Grains Model (EGM), can reproduce the main modes of response in the plastic range, including BE. Then we apply it to planar impact tests and show that it can reproduce the QE response

    Shock initiation modeling of multicomponent explosives

    No full text

    On the partially reacted boundary layer in rate sticks

    No full text

    Calculation of Viscoelastic Response

    Full text link

    Rate dependent shear failure and the scaling effect in long rod penetration

    No full text

    Detonation Velocity Dependence on Front Curvature for Overdriven Detonation in Solid Explosives

    Full text link

    Modeling combined tension-shear failure of ductile materials

    No full text
    corecore