5,914 research outputs found

    Efficient Ultrasound Image Analysis Models with Sonographer Gaze Assisted Distillation.

    Get PDF
    Recent automated medical image analysis methods have attained state-of-the-art performance but have relied on memory and compute-intensive deep learning models. Reducing model size without significant loss in performance metrics is crucial for time and memory-efficient automated image-based decision-making. Traditional deep learning based image analysis only uses expert knowledge in the form of manual annotations. Recently, there has been interest in introducing other forms of expert knowledge into deep learning architecture design. This is the approach considered in the paper where we propose to combine ultrasound video with point-of-gaze tracked for expert sonographers as they scan to train memory-efficient ultrasound image analysis models. Specifically we develop teacher-student knowledge transfer models for the exemplar task of frame classification for the fetal abdomen, head, and femur. The best performing memory-efficient models attain performance within 5% of conventional models that are 1000× larger in size

    Development of the Lymphoedema Genito-Urinary Cancer Questionnaire

    Get PDF
    The aim of this study was to develop a patient self-report tool to detect symptoms of genital and lower limb lymphoedema in male survivors of genitourinary cancer. The study incorporated the views of patients and subject specialists (lymphoedema and urology) in the design of a patient questionnaire based on the literature. Views on comprehensiveness, relevance of content, ease of understanding and perceived acceptability to patients were collated. The findings informed the development of the next iteration of the questionnaire. The overall view of participants was that the development and application of such a tool was of great clinical value and the Lymphoedema Genito- Urinary Cancer Questionnaire (LGUCQ) has significant potential for further development as a research tool to inform prevalence of this under-reported condition

    Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features.

    Get PDF
    Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors

    Noninhibitory PAI-1 enhances plasmin-mediated matrix degradation both in vitro and in experimental nephritis

    Get PDF
    Plasminogen activator inhibitor-type 1 (PAI-1) is thought to be profibrotic by inhibiting plasmin generation, thereby decreasing turnover of pathological extracellular matrix (ECM). A mutant, noninhibitory PAI-1 (PAI-1R) was recently shown by us to increase glomerular plasmin generation and reduce disease in anti-thy-1 nephritis. Here, in vitro and in vivo studies were performed to determine whether enhanced plasmin-dependent ECM degradation underlies the therapeutic effect of PAI-1R. 3H-labeled ECM was produced by rat mesangial cells (MCs). The effect of wild-type PAI-1 (wt-PAI-1) and PAI-1R on ECM degradation by newly plated MCs was measured by the release of 3H into medium. In vivo, anti-thy-1 nephritis was assessed in normal, untreated diseased and PAI-1R treated rats with or without the plasmin/plasminogen inhibitor, tranexamic acid (TA). wt-PAI-1 totally inhibited plasmin generation and reduced ECM degradation by 76% when exogenous plasminogen was added. Although PAI-1R alone had no effect, PAI-1R in the presence of wt-PAI-1 reversed the wt-PAI-1 inhibition of ECM degradation in a time- and dose-dependent manner (P<0.001). Plasmin activity and zymography were consistent with ECM degradation. Plasmin inhibitors: α2-antiplasmin, aprotinin, and TA completely blocked PAI-1R's ability to normalize ECM degradation (P<0.001). Consistent with the in vitro results, TA reversed PAI-1R-induced reductions in glomerular fibrin and ECM accumulation. Other measures of disease severity were either unaltered or partially reversed. PAI-1R reduces pathological ECM accumulation, in large part through effectively competing with native PAI-1 thereby restoring plasmin generation and increasing plasmin-dependent degradation of matrix components

    Narrow Line Cooling and Momentum-Space Crystals

    Full text link
    Narrow line laser cooling is advancing the frontier for experiments ranging from studies of fundamental atomic physics to high precision optical frequency standards. In this paper, we present an extensive description of the systems and techniques necessary to realize 689 nm 1S0 - 3P1 narrow line cooling of atomic 88Sr. Narrow line cooling and trapping dynamics are also studied in detail. By controlling the relative size of the power broadened transition linewidth and the single-photon recoil frequency shift, we show that it is possible to continuously bridge the gap between semiclassical and quantum mechanical cooling. Novel semiclassical cooling process, some of which are intimately linked to gravity, are also explored. Moreover, for laser frequencies tuned above the atomic resonance, we demonstrate momentum-space crystals containing up to 26 well defined lattice points. Gravitationally assisted cooling is also achieved with blue-detuned light. Theoretically, we find the blue detuned dynamics are universal to Doppler limited systems. This paper offers the most comprehensive study of narrow line laser cooling to date.Comment: 14 pages, 19 figure

    Resonant-state solution of the Faddeev-Merkuriev integral equations for three-body systems with Coulomb potentials

    Get PDF
    A novel method for calculating resonances in three-body Coulombic systems is proposed. The Faddeev-Merkuriev integral equations are solved by applying the Coulomb-Sturmian separable expansion method. The e−e+e−e^- e^+ e^- S-state resonances up to n=5n=5 threshold are calculated.Comment: 6 pages, 2 ps figure

    Estimating Small Area Income Deprivation: An Iterative Proportional Fitting Approach

    Get PDF
    Small area estimation and in particular the estimation of small area income deprivation has potential value in the development of new or alternative components of multiple deprivation indices. These new approaches enable the development of income distribution threshold based as opposed to benefit count based measures of income deprivation and so enable the alignment of regional and national measures such as the Households Below Average Income with small area measures. This paper briefly reviews a number of approaches to small area estimation before describing in some detail an iterative proportional fitting based spatial microsimulation approach. This approach is then applied to the estimation of small area HBAI rates at the small area level in Wales in 2003-5. The paper discusses the results of this approach, contrasts them with contemporary ‘official’ income deprivation measures for the same areas and describes a range of ways to assess the robustness of the results

    Analytical solutions of the lattice Boltzmann BGK model

    Full text link
    Analytical solutions of the two dimensional triangular and square lattice Boltzmann BGK models have been obtained for the plain Poiseuille flow and the plain Couette flow. The analytical solutions are written in terms of the characteristic velocity of the flow, the single relaxation time τ\tau and the lattice spacing. The analytic solutions are the exact representation of these two flows without any approximation.Comment: 10 pages, no postscript figure provide
    • 

    corecore