72 research outputs found

    Liposome-Mediated Cellular Delivery of Active gp91phox

    Get PDF
    International audienceBACKGROUND: Gp91(phox) is a transmembrane protein and the catalytic core of the NADPH oxidase complex of neutrophils. Lack of this protein causes chronic granulomatous disease (CGD), a rare genetic disorder characterized by severe and recurrent infections due to the incapacity of phagocytes to kill microorganisms. METHODOLOGY: Here we optimize a prokaryotic cell-free expression system to produce integral mammalian membrane proteins. CONCLUSIONS: Using this system, we over-express truncated forms of the gp91(phox) protein under soluble form in the presence of detergents or lipids resulting in active proteins with a "native-like" conformation. All the proteins exhibit diaphorase activity in the presence of cytosolic factors (p67(phox), p47(phox), p40(phox) and Rac) and arachidonic acid. We also produce proteoliposomes containing gp91(phox) protein and demonstrate that these proteins exhibit activities similar to their cellular counterpart. The proteoliposomes induce rapid cellular delivery and relocation of recombinant gp91(phox) proteins to the plasma membrane. Our data support the concept of cell-free expression technology for producing recombinant proteoliposomes and their use for functional and structural studies or protein therapy by complementing deficient cells in gp91(phox) protein

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis
    corecore