736 research outputs found
One-by-one trap activation in silicon nanowire transistors
Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors
(MOSFETs) has been identified as the main source of noise at low frequency. It
often originates from an ensemble of a huge number of charges trapping and
detrapping. However, a deviation from the well-known model of 1/f noise is
observed for nanoscale MOSFETs and a new model is required. Here, we report the
observation of one-by-one trap activation controlled by the gate voltage in a
nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale
FETs. We demonstrate that the Coulomb repulsion between electronically charged
trap sites avoids the activation of several traps simultaneously. This effect
induces a noise reduction by more than one order of magnitude. It decreases
when increasing the electron density in the channel due to the electrical
screening of traps. These findings are technologically useful for any FETs with
a short and narrow channel.Comment: One file with paper and supplementary informatio
Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179
The rd1 mouse with a mutation in the Pde6b gene was the first strain of mice identified with a retinal degeneration. However, AAV-mediated gene supplementation of rd1 mice only results in structural preservation of photoreceptors, and restoration of the photoreceptor-mediated a-wave, but not in restoration of the bipolar cell-mediated b-wave. Here we show that a mutation in Gpr179 prevents the full restoration of vision in rd1 mice. Backcrossing rd1 with C57BL6 mice reveals the complete lack of b-wave in a subset of mice, consistent with an autosomal recessive Mendelian inheritance pattern. We identify a mutation in the Gpr179 gene, which encodes for a G-protein coupled receptor localized to the dendrites of ON-bipolar cells. Gene replacement in rd1 mice that are devoid of the mutation in Gpr179 successfully restores the function of both photoreceptors and bipolar cells, which is maintained for up to 13 months. Our discovery may explain the failure of previous gene therapy attempts in rd1 mice, and we propose that Grp179 mutation status should be taken into account in future studies involving rd1 mice
Phonon Universal Transmission Fluctuations and Localization in Semiconductor Superlattices with a Controlled Degree of Order
We study both analytically and numerically phonon transmission fluctuations
and localization in partially ordered superlattices with correlations among
neighboring layers. In order to generate a sequence of layers with a varying
degree of order we employ a model proposed by Hendricks and Teller as well as
partially ordered versions of deterministic aperiodic superlattices. By
changing a parameter measuring the correlation among adjacent layers, the
Hendricks- Teller superlattice exhibits a transition from periodic ordering,
with alterna- ting layers, to the phase separated opposite limit; including
many intermediate arrangements and the completely random case. In the partially
ordered versions of deterministic superlattices, there is short-range order
(among any conse- cutive layers) and long range disorder, as in the N-state
Markov chains. The average and fluctuations in the transmission, the
backscattering rate, and the localization length in these multilayered systems
are calculated based on the superlattice structure factors we derive
analytically. The standard deviation of the transmission versus the average
transmission lies on a {\it universal\/} curve irrespective of the specific
type of disorder of the SL. We illustrate these general results by applying
them to several GaAs-AlAs superlattices for the proposed experimental
observation of phonon universal transmission fluctuations.Comment: 16-pages, Revte
Electromechanics of charge shuttling in dissipative nanostructures
We investigate the current-voltage (IV) characteristics of a model
single-electron transistor where mechanical motion, subject to strong
dissipation, of a small metallic grain is possible. The system is studied both
by using Monte Carlo simulations and by using an analytical approach. We show
that electromechanical coupling results in a highly nonlinear IV-curve. For
voltages above the Coulomb blockade threshold, two distinct regimes of charge
transfer occur: At low voltages the system behave as a static asymmetric double
junction and tunneling is the dominating charge transfer mechanism. At higher
voltages an abrupt transition to a new shuttle regime appears, where the grain
performs an oscillatory motion back and forth between the leads. In this regime
the current is mainly mediated by charges that are carried on the grain as it
moves from one lead to the other.Comment: 8 pages, 10 figures, final version to be published in PR
Impurity conduction in phosphorus-doped buried-channel silicon-on-insulator field-effect transistors
We investigate transport in phosphorus-doped buried-channel
metal-oxide-semiconductor field-effect transistors at temperatures between 10
and 295 K. In a range of doping concentration between around 2.1 and 8.7 x 1017
cm-3, we find that a clear peak emerges in the conductance versus gate-voltage
curves at low temperature. In addition, temperature dependence measurements
reveal that the conductance obeys a variable-range-hopping law up to an
unexpectedly high temperature of over 100 K. The symmetric dual-gate
configuration of the silicon-on-insulator we use allows us to fully
characterize the vertical-bias dependence of the conductance. Comparison to
computer simulation of the phosphorus impurity band depth-profile reveals how
the spatial variation of the impurity-band energy determines the hopping
conduction in transistor structures. We conclude that the emergence of the
conductance peak and the high-temperature variable-range hopping originate from
the band bending and its change by the gate bias. Moreover, the peak structure
is found to be strongly related to the density of states (DOS) of the
phosphorus impurity band, suggesting the possibility of performing a novel
spectroscopy for the DOS of phosphorus, the dopant of paramount importance in
Si technology, through transport experiments.Comment: 9 figure
Design and fabrication of densely integrated silicon quantum dots using a VLSI compatible hydrogen silsesquioxane electron beam lithography process
Hydrogen silsesquioxane (HSQ) is a high resolution negative-tone electron beam resist allowing for direct transfer of nanostructures into silicon-on-insulator. Using this resist for electron beam lithography, we fabricate high density lithographically defined Silicon double quantum dot (QD) transistors. We show that our approach is compatible with very large scale integration, allowing for parallel fabrication of up to 144 scalable devices. HSQ process optimisation allowed for realisation of reproducible QD dimensions of 50 nm and tunnel junction down to 25 nm. We observed that 80% of the fabricated devices had dimensional variations of less than 5 nm. These are the smallest high density double QD transistors achieved to date. Single electron simulations combined with preliminary electrical characterisations justify the reliability of our device and process
Low frequency current noise of the single-electron shuttle
Coupling between electronic and mechanical degrees of freedom in a single
electron shuttle system can cause a mechanical instability leading to shuttle
transport of electrons between external leads. We predict that the resulting
low frequency current noise can be enhanced due to amplitude fluctuations of
the shuttle oscillations. Moreover, at the onset of mechanical instability a
pronounced peak in the low frequency noise is expected.Comment: 14 pages, 3 figures, 1 tabl
Phonon dispersion and electron-phonon interaction in peanut-shaped fullerene polymers
We reveal that the periodic radius modulation peculiar to one-dimensional
(1D) peanut-shaped fullerene (C) polymers exerts a strong influence on
their low-frequency phonon states and their interactions with mobile electrons.
The continuum approximation is employed to show the zone-folding of phonon
dispersion curves, which leads to fast relaxation of a radial breathing mode in
the 1D C polymers. We also formulate the electron-phonon interaction
along the deformation potential theory, demonstrating that only a few set of
electron and phonon modes yields a significant magnitude of the interaction
relevant to the low-temperature physics of the system. The latter finding gives
an important implication for the possible Peierls instability of the C
polymers suggested in the earlier experiment.Comment: 9 pages, 8 figure
- …