26,292 research outputs found

    Hadwiger's conjecture for 3-arc graphs

    Full text link
    The 3-arc graph of a digraph DD is defined to have vertices the arcs of DD such that two arcs uv,xyuv, xy are adjacent if and only if uvuv and xyxy are distinct arcs of DD with vxv\ne x, yuy\ne u and u,xu,x adjacent. We prove that Hadwiger's conjecture holds for 3-arc graphs

    Superposition as memory: unlocking quantum automatic complexity

    Full text link
    Imagine a lock with two states, "locked" and "unlocked", which may be manipulated using two operations, called 0 and 1. Moreover, the only way to (with certainty) unlock using four operations is to do them in the sequence 0011, i.e., 0n1n0^n1^n where n=2n=2. In this scenario one might think that the lock needs to be in certain further states after each operation, so that there is some memory of what has been done so far. Here we show that this memory can be entirely encoded in superpositions of the two basic states "locked" and "unlocked", where, as dictated by quantum mechanics, the operations are given by unitary matrices. Moreover, we show using the Jordan--Schur lemma that a similar lock is not possible for n=60n=60. We define the semi-classical quantum automatic complexity Qs(x)Q_{s}(x) of a word xx as the infimum in lexicographic order of those pairs of nonnegative integers (n,q)(n,q) such that there is a subgroup GG of the projective unitary group PU(n)(n) with Gq|G|\le q and with U0,U1GU_0,U_1\in G such that, in terms of a standard basis {ek}\{e_k\} and with Uz=kUz(k)U_z=\prod_k U_{z(k)}, we have Uxe1=e2U_x e_1=e_2 and Uye1e2U_y e_1 \ne e_2 for all yxy\ne x with y=x|y|=|x|. We show that QsQ_s is unbounded and not constant for strings of a given length. In particular, Qs(0212)(2,12)<(3,1)Qs(060160) Q_{s}(0^21^2)\le (2,12) < (3,1) \le Q_{s}(0^{60}1^{60}) and Qs(0120)(2,121)Q_s(0^{120})\le (2,121).Comment: Lecture Notes in Computer Science, UCNC (Unconventional Computation and Natural Computation) 201

    Cooperation with an Untrusted Relay: A Secrecy Perspective

    Full text link
    We consider the communication scenario where a source-destination pair wishes to keep the information secret from a relay node despite wanting to enlist its help. For this scenario, an interesting question is whether the relay node should be deployed at all. That is, whether cooperation with an untrusted relay node can ever be beneficial. We first provide an achievable secrecy rate for the general untrusted relay channel, and proceed to investigate this question for two types of relay networks with orthogonal components. For the first model, there is an orthogonal link from the source to the relay. For the second model, there is an orthogonal link from the relay to the destination. For the first model, we find the equivocation capacity region and show that answer is negative. In contrast, for the second model, we find that the answer is positive. Specifically, we show by means of the achievable secrecy rate based on compress-and-forward, that, by asking the untrusted relay node to relay information, we can achieve a higher secrecy rate than just treating the relay as an eavesdropper. For a special class of the second model, where the relay is not interfering itself, we derive an upper bound for the secrecy rate using an argument whose net effect is to separate the eavesdropper from the relay. The merit of the new upper bound is demonstrated on two channels that belong to this special class. The Gaussian case of the second model mentioned above benefits from this approach in that the new upper bound improves the previously known bounds. For the Cover-Kim deterministic relay channel, the new upper bound finds the secrecy capacity when the source-destination link is not worse than the source-relay link, by matching with the achievable rate we present.Comment: IEEE Transactions on Information Theory, submitted October 2008, revised October 2009. This is the revised versio
    corecore