13,703 research outputs found
High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM
A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre optic sensor array systems. This architecture employs a distributed erbium doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources
Pancharatnam and Berry Phases in Three-Level Photonic Systems
A theoretical analysis of Pancharatnam and Berry phases is made for biphoton
three-level systems, which are produced via frequency degenerate co-linear
spontaneous parametric down conversion (SPDC). The general theory of
Pancharatnam phases is discussed with a special emphasis on geodesic 'curves'in
Hilbert space. Explicit expressions for Pancharatnam, dynamical and geometrical
phases are derived for the transformations produced by linear phase-converters.
The problem of gauge invariance is treated along all the article
High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM
A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre optic sensor array systems. This architecture employs a distributed erbium doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources
Quantum Stability of (2+1)-Spacetimes with Non-Trivial Topology
Quantum fields are investigated in the (2+1)-open-universes with non-trivial
topologies by the method of images. The universes are locally de Sitter
spacetime and anti-de Sitter spacetime. In the present article we study
spacetimes whose spatial topologies are a torus with a cusp and a sphere with
three cusps as a step toward the more general case. A quantum energy momentum
tensor is obtained by the point stripping method. Though the cusps are no
singularities, the latter cusps cause the divergence of the quantum field. This
suggests that only the latter cusps are quantum mechanically unstable. Of
course at the singularity of the background spacetime the quantum field
diverges. Also the possibility of the divergence of topological effect by a
negative spatial curvature is discussed. Since the volume of the negatively
curved space is larger than that of the flat space, one see so many images of a
single source by the non-trivial topology. It is confirmed that this divergence
does not appear in our models of topologies. The results will be applicable to
the case of three dimensional multi black hole\cite{BR}.Comment: 17 pages, revtex, 3 uuencoded figures containe
Nash bargaining in ordinal environments
We analyze the implications of Nash’s (1950) axioms in ordinal bargaining environments; there, the scale invariance axiom needs to be strenghtened to take into account all order-preserving transformations of the agents’ utilities. This axiom, called ordinal invariance, is a very demanding one. For two-agents, it is violated by every strongly individually rational bargaining rule. In general, no ordinally invariant bargaining rule satisfies the other three axioms of Nash. Parallel to Roth (1977), we introduce a weaker independence of irrelevant alternatives axiom that we argue is better suited for ordinally invariant bargaining rules. We show that the three-agent Shapley-Shubik bargaining rule uniquely satisfies ordinal invariance, Pareto optimality, symmetry, and this weaker independence of irrelevant alternatives axiom. We also analyze the implications of other independence axioms
Labeling Schemes for Bounded Degree Graphs
We investigate adjacency labeling schemes for graphs of bounded degree
. In particular, we present an optimal (up to an additive
constant) adjacency labeling scheme for bounded degree trees.
The latter scheme is derived from a labeling scheme for bounded degree
outerplanar graphs. Our results complement a similar bound recently obtained
for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new
insights for closing the long standing gap for adjacency in trees [Alstrup and
Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree
planar graphs. Finally, we use combinatorial number systems and present an
improved adjacency labeling schemes for graphs of bounded degree with
The Core of the Participatory Budgeting Problem
In participatory budgeting, communities collectively decide on the allocation
of public tax dollars for local public projects. In this work, we consider the
question of fairly aggregating the preferences of community members to
determine an allocation of funds to projects. This problem is different from
standard fair resource allocation because of public goods: The allocated goods
benefit all users simultaneously. Fairness is crucial in participatory decision
making, since generating equitable outcomes is an important goal of these
processes. We argue that the classic game theoretic notion of core captures
fairness in the setting. To compute the core, we first develop a novel
characterization of a public goods market equilibrium called the Lindahl
equilibrium, which is always a core solution. We then provide the first (to our
knowledge) polynomial time algorithm for computing such an equilibrium for a
broad set of utility functions; our algorithm also generalizes (in a
non-trivial way) the well-known concept of proportional fairness. We use our
theoretical insights to perform experiments on real participatory budgeting
voting data. We empirically show that the core can be efficiently computed for
utility functions that naturally model our practical setting, and examine the
relation of the core with the familiar welfare objective. Finally, we address
concerns of incentives and mechanism design by developing a randomized
approximately dominant-strategy truthful mechanism building on the exponential
mechanism from differential privacy
Recommended from our members
Syk-dependent Phosphorylation of CLEC-2: A Novel Mechanism of Hem-Immunoreceptor Tyrosine-Based Activation Motif Signaling
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors
- …
