45 research outputs found

    The role of concurrent chemoradiotherapy in the treatment of locoregionally advanced nasopharyngeal carcinoma among endemic population: a meta-analysis of the phase iii randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this meta-analysis was to determine the clinical benefit of concurrent chemoradiotherapy (CCRT) compared with radiation alone (RT) in the treatment of nasopharyngeal carcinoma (NPC) patients in endemic geographic areas.</p> <p>Methods</p> <p>Using a prospective meta-analysis protocol, two independent investigators reviewed the publications and extracted the data. Published randomized controlled trials (RCTs) in which patients with NPC in endemic areas were randomly assigned to receive CCRT or RT alone were included.</p> <p>Results</p> <p>Seven trials (totally 1608 patients) were eligible. Risk ratios (RRs) of 0.63 (95% CI, 0.50 to 0.80), 0.76 (95% CI, 0.61 to 0.93) and 0.74 (95% CI, 0.62 to 0.89) were observed for 2, 3 and 5 years OS respectively in favor of the CCRT group. The RRs were larger than that detected in the previously reported meta-analyses (including both endemic and non-endemic), indicating that the relative benefit of survival was smaller than what considered before.</p> <p>Conclusions</p> <p>This is the first meta-analysis of CCRT vs. RT alone in NPC treatment which included studies only done in endemic area. The results confirmed that CCRT was more beneficial compared with RT alone. However, the relative benefit of CCRT in endemic population might be less than that from previous meta-analyses.</p

    SPINK1 as a plasma marker for tumor hypoxia and a therapeutic target for radiosensitization

    Get PDF
    Hypoxia is associated with tumor radioresistance; therefore, a predictive marker for tumor hypoxia and a rational target to overcome it have been sought to realize personalized radiotherapy. Here, we show that serine protease inhibitor Kazal type I (SPINK1) meets these 2 criteria. SPINK1 expression was induced upon hypoxia (O2 < 0.1%) at the transcription initiation level in a HIF-dependent manner, causing an increase in secreted SPINK1 levels. SPINK1 proteins were detected both within and around hypoxic regions of xenografted and clinical tumor tissues, and their plasma levels increased in response to decreased oxygen supply to xenografts. Secreted SPINK1 proteins enhanced radioresistance of cancer cells even under normoxic conditions in EGFR-dependent and nuclear factor erythroid 2–related factor 2–dependent (Nrf2-dependent) manners and accelerated tumor growth after radiotherapy. An anti-SPINK1 neutralizing antibody exhibited a radiosensitizing effect. These results suggest that SPINK1 secreted from hypoxic cells protects the surrounding and relatively oxygenated cancer cells from radiation in a paracrine manner, justifying the use of SPINK1 as a target for radiosensitization and a plasma marker for predicting tumor hypoxia
    corecore