15,363 research outputs found
Semantic Wide and Deep Learning for Detecting Crisis-Information Categories on Social Media
When crises hit, many flog to social media to share or consume information related to the event. Social media posts during crises tend to provide valuable reports on affected people, donation offers, help requests, advice provision, etc. Automatically identifying the category of information (e.g., reports on affected individuals, donations and volunteers) contained in these posts is vital for their efficient handling and consumption by effected communities and concerned organisations. In this paper, we introduce Sem-CNN; a wide and deep Convolutional Neural Network (CNN) model designed for identifying the category of information contained in crisis-related social media content. Unlike previous models, which mainly rely on the lexical representations of words in the text, the proposed model integrates an additional layer of semantics that represents the named entities in the text, into a wide and deep CNN network. Results show that the Sem-CNN model consistently outperforms the baselines which consist of
statistical and non-semantic deep learning models
Multi-Dimensional Astrophysical Structural and Dynamical Analysis I. Development of a Nonlinear Finite Element Approach
A new field of numerical astrophysics is introduced which addresses the
solution of large, multidimensional structural or slowly-evolving problems
(rotating stars, interacting binaries, thick advective accretion disks, four
dimensional spacetimes, etc.). The technique employed is the Finite Element
Method (FEM), commonly used to solve engineering structural problems. The
approach developed herein has the following key features:
1. The computational mesh can extend into the time dimension, as well as
space, perhaps only a few cells, or throughout spacetime.
2. Virtually all equations describing the astrophysics of continuous media,
including the field equations, can be written in a compact form similar to that
routinely solved by most engineering finite element codes.
3. The transformations that occur naturally in the four-dimensional FEM
possess both coordinate and boost features, such that
(a) although the computational mesh may have a complex, non-analytic,
curvilinear structure, the physical equations still can be written in a simple
coordinate system independent of the mesh geometry.
(b) if the mesh has a complex flow velocity with respect to coordinate space,
the transformations will form the proper arbitrary Lagrangian- Eulerian
advective derivatives automatically.
4. The complex difference equations on the arbitrary curvilinear grid are
generated automatically from encoded differential equations.
This first paper concentrates on developing a robust and widely-applicable
set of techniques using the nonlinear FEM and presents some examples.Comment: 28 pages, 9 figures; added integral boundary conditions, allowing
very rapidly-rotating stars; accepted for publication in Ap.
Current-Driven Domain-Wall Dynamics in Curved Ferromagnetic Nanowires
The current-induced motion of a domain wall in a semicircle nanowire with
applied Zeeman field is investigated. Starting from a micromagnetic model we
derive an analytical solution which characterizes the domain-wall motion as a
harmonic oscillation. This solution relates the micromagnetic material
parameters with the dynamical characteristics of a harmonic oscillator, i.e.,
domain-wall mass, resonance frequency, damping constant, and force acting on
the wall. For wires with strong curvature the dipole moment of the wall as well
as its geometry influence the eigenmodes of the oscillator. Based on these
results we suggest experiments for the determination of material parameters
which otherwise are difficult to access. Numerical calculations confirm our
analytical solution and show its limitations
P-values for high-dimensional regression
Assigning significance in high-dimensional regression is challenging. Most
computationally efficient selection algorithms cannot guard against inclusion
of noise variables. Asymptotically valid p-values are not available. An
exception is a recent proposal by Wasserman and Roeder (2008) which splits the
data into two parts. The number of variables is then reduced to a manageable
size using the first split, while classical variable selection techniques can
be applied to the remaining variables, using the data from the second split.
This yields asymptotic error control under minimal conditions. It involves,
however, a one-time random split of the data. Results are sensitive to this
arbitrary choice: it amounts to a `p-value lottery' and makes it difficult to
reproduce results. Here, we show that inference across multiple random splits
can be aggregated, while keeping asymptotic control over the inclusion of noise
variables. We show that the resulting p-values can be used for control of both
family-wise error (FWER) and false discovery rate (FDR). In addition, the
proposed aggregation is shown to improve power while reducing the number of
falsely selected variables substantially.Comment: 25 pages, 4 figure
Bending for love: Losses and gains of sexual dimorphisms are strictly correlated with changes in the mounting position of sepsid flies (Sepsidae: Diptera)
10.1186/1471-2148-8-155BMC Evolutionary Biology81
First principles study of local electronic and magnetic properties in pure and electron-doped NdCuO
The local electronic structure of Nd2CuO4 is determined from ab-initio
cluster calculations in the framework of density functional theory.
Spin-polarized calculations with different multiplicities enable a detailed
study of the charge and spin density distributions, using clusters that
comprise up to 13 copper atoms in the CuO2plane. Electron doping is simulated
by two different approaches and the resulting changes in the local charge
distribution are studied in detail and compared to the corresponding changes in
hole doped La2CuO4. The electric field gradient (EFG) at the copper nucleus is
investigated in detail and good agreement is found with experimental values. In
particular the drastic reduction of the main component of the EFG in the
electron-doped material with respect to LaCuO4 is explained by a reduction of
the occupancy of the 3d3z^2-r^2 atomic orbital. Furthermore, the chemical
shieldings at the copper nucleus are determined and are compared to results
obtained from NMR measurements. The magnetic hyperfine coupling constants are
determined from the spin density distribution
Kinetics of spin coherence of electrons in -type InAs quantum wells under intense terahertz laser fields
Spin kinetics in -type InAs quantum wells under intense terahertz laser
fields is investigated by developing fully microscopic kinetic spin Bloch
equations via the Floquet-Markov theory and the nonequilibrium Green's function
approach, with all the relevant scattering, such as the electron-impurity,
electron-phonon, and electron-electron Coulomb scattering explicitly included.
We find that a {\em finite} steady-state terahertz spin polarization induced by
the terahertz laser field, first predicted by Cheng and Wu [Appl. Phys. Lett.
{\bf 86}, 032107 (2005)] in the absence of dissipation, exists even in the
presence of all the scattering. We further discuss the effects of the terahertz
laser fields on the spin relaxation and the steady-state spin polarization. It
is found that the terahertz laser fields can {\em strongly} affect the spin
relaxation via hot-electron effect and the terahertz-field-induced effective
magnetic field in the presence of spin-orbit coupling. The two effects compete
with each other, giving rise to {\em non-monotonic} dependence of the spin
relaxation time as well as the amplitude of the steady state spin polarization
on the terahertz field strength and frequency. The terahertz field dependences
of these quantities are investigated for various impurity densities, lattice
temperatures, and strengths of the spin-orbit coupling. Finally, the importance
of the electron-electron Coulomb scattering on spin kinetics is also addressed.Comment: 17 pages, 16 figures, Phys. Rev. B 78, 2008, in pres
Independent ferroelectric contributions and rare-earth-induced polarization reversal in multiferroic TbMn2O5
Three independent contributions to the magnetically induced spontaneous
polarization of multiferroic TbMn2O5 are uniquely separated by optical second
harmonic generation and an analysis in terms of Landau theory. Two of them are
related to the magnetic Mn3+/4+ order and are independent of applied fields of
up to 7 T. The third contribution is related to the long-range
antiferromagnetic Tb3+ order. It shows a drastic decrease upon the application
of a magnetic field and mediates the change of sign of the spontaneous electric
polarization in TbMn2O5. The close relationship between the rare-earth
long-range order and the non-linear optical properties points to isotropic
Tb-Tb exchange and oxygen spin polarization as mechanism for this rare-earth
induced ferroelectricity.Comment: 8 pages, 5 figure
Effect of electron-electron scattering on spin dephasing in a high-mobility low-density twodimensional electron gas
Utilizing time-resolved Kerr rotation techniques, we have investigated the
spin dynamics of a high mobility, low density two dimensional electron gas in a
GaAs/Al0:35Ga0:65As heterostructure in dependence on temperature from 1.5 K to
30 K. It is found that the spin relaxation/dephasing time under a magnetic
field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, superimposed on an
increasing background with rising temperature. The appearance of the maximum is
ascribed to that at the temperature where the crossover from the degenerate to
the nondegenerate regime takes place, electron-electron Coulomb scattering
becomes strongest, and thus inhomogeneous precession broadening due to
D'yakonov-Perel'(DP) mechanism becomes weakest. These results agree with the
recent theoretical predictions [Zhou et al., PRB 75, 045305 (2007)], verifying
the importance of electron-electron Coulomb scattering to electron spin
relaxation/dephasing.Comment: 4 pages, 2 figure
- …