759 research outputs found

    Novel Orbital Ordering induced by Anisotropic Stress in a Manganite Thin Film

    Full text link
    We performed resonant and nonresonant x-ray diffraction studies of a Nd0.5Sr0.5MnO3 thin film that exhibits a clear first-order transition. Lattice parameters vary drastically at the metal-insulator transition at 170K (=T_MI), and superlattice reflections appear below 140K (=T_CO). The electronic structure between T_MI and T_CO is identified as A-type antiferromagnetic with the d_{x2-y2} ferroorbital ordering. Below T_CO, a new type of antiferroorbital ordering emerges. The accommodation of the large lattice distortion at the first-order phase transition and the appearance of the novel orbital ordering are brought about by the anisotropy in the substrate, a new parameter for the phase control.Comment: 4pages, 4figure

    Ultrafast Photoinduced Formation of Metallic State in a Perovskite-type Manganite with Short Range Charge and Orbital Order

    Full text link
    Femtosecond reflection spectroscopy was performed on a perovskite-type manganite, Gd0.55Sr0.45MnO3, with the short-range charge and orbital order (CO/OO). Immediately after the photoirradiation, a large increase of the reflectivity was detected in the mid-infrared region. The optical conductivity spectrum under photoirradiation obtained from the Kramers-Kronig analyses of the reflectivity changes demonstrates a formation of a metallic state. This suggests that ferromagnetic spin arrangements occur within the time resolution (ca. 200 fs) through the double exchange interaction, resulting in an ultrafast CO/OO to FM switching.Comment: 4 figure

    Size of Orbital Ordering Domain Controlled by the Itinerancy of the 3d Electrons in a Manganite Thin Film

    Full text link
    An electronic effect on a macroscopic domain structure is found in a strongly correlated half-doped manganite film Nd0.5_{0.5}Sr0.5_{0.5}MnO3 grown on a (011) surface of SrTiO3. The sample has a high-temperature (HT) phase free from distortion above 180K and two low-temperature (LT) phases with a large shear-mode strain and a concomitant twin structure. One LT phase has a large itinerancy (A-type), and the other has a small itinerancy (CE-type), while the lattice distortions they cause are almost equal. Our x ray diffraction measurement shows that the domain size of the LT phase made by the HT-CE transition is much smaller than that by the HT-A transition, indicating that the difference in domain size is caused by the electronic states of the LT phases.Comment: 9 pages, 4 figure

    An X-Ray Induced Structural Transition in La_0.875Sr_0.125MnO_3

    Full text link
    We report a synchrotron x-ray scattering study of the magnetoresistive manganite La_0.875Sr_0.125MnO_3. At low temperatures, this material undergoes an x-ray induced structural transition at which charge ordering of Mn^3+ and Mn^4+ ions characteristic to the low-temperature state of this compound is destroyed. The transition is persistent but the charge-ordered state can be restored by heating above the charge-ordering transition temperature and subsequently cooling. The charge-ordering diffraction peaks, which are broadened at all temperatures, broaden more upon x-ray irradiation, indicating the finite correlation length of the charge-ordered state. Together with the recent reports on x-ray induced transitions in Pr_(1-x)Ca_xMnO_3, our results demonstrate that the photoinduced structural change is a common property of the charge-ordered perovskite manganites.Comment: 5 pages, 4 embedded EPS figures; significant changes in the data analysis mad

    Near-Optimal Scheduling for LTL with Future Discounting

    Full text link
    We study the search problem for optimal schedulers for the linear temporal logic (LTL) with future discounting. The logic, introduced by Almagor, Boker and Kupferman, is a quantitative variant of LTL in which an event in the far future has only discounted contribution to a truth value (that is a real number in the unit interval [0, 1]). The precise problem we study---it naturally arises e.g. in search for a scheduler that recovers from an internal error state as soon as possible---is the following: given a Kripke frame, a formula and a number in [0, 1] called a margin, find a path of the Kripke frame that is optimal with respect to the formula up to the prescribed margin (a truly optimal path may not exist). We present an algorithm for the problem; it works even in the extended setting with propositional quality operators, a setting where (threshold) model-checking is known to be undecidable

    CSO validator: improving manual curation workflow for biological pathways

    Get PDF
    Summary: Manual curation and validation of large-scale biological pathways are required to obtain high-quality pathway databases. In a typical curation process, model validation and model update based on appropriate feedback are repeated and requires considerable cooperation of scientists. We have developed a CSO (Cell System Ontology) validator to reduce the repetition and time during the curation process. This tool assists in quickly obtaining agreement among curators and domain experts and in providing a consistent and accurate pathway database

    Layer dynamics of a freely standing smectic-A film

    Full text link
    We study the hydrodynamics of a freely-standing smectic-A film in the isothermal, incompressible limit theoretically by analyzing the linearized hydrodynamic equations of motion with proper boundary conditions. The dynamic properties for the system can be obtained from the response functions for the free surfaces. Permeation is included and its importance near the free surfaces is discussed. The hydrodynamic mode structure for the dynamics of the system is compared with that of bulk systems. We show that to describe the dynamic correlation functions for the system, in general, it is necessary to consider the smectic layer displacement uu and the velocity normal to the layers, vzv_z, together. Finally, our analysis also provides a basis for the theoretical study of the off-equilibrium dynamics of freely-standing smectic-A films.Comment: 22 pages, 4 figure

    Soft spin waves in the low temperature thermodynamics of Pr_{0.7}Ca_{0.3}MnO_{3}

    Full text link
    We present a detailed magnetothermal study of Pr(0.7)Ca(0.3)MnO(3), a perovskite manganite in which an insulator-metal transition can be driven by magnetic field, but also by pressure, visible light, x-rays, or high currents. We find that the field-induced transition is associated with an enormous release of energy which accounts for its strong irreversibility. In the ferromagnetic metallic state, specific heat and magnetization measurements indicate a much smaller spin wave stiffness than that seen in any other manganite, which we attribute to spin waves among the ferromagnetically ordered Pr moments. The coupling between the Pr and Mn spins may also provide a basis for understanding the low temperature phase diagram of this most unusual manganite.Comment: 10 pages, LATEX, 5 PDF figures, corrected typo
    corecore