759 research outputs found
Novel Orbital Ordering induced by Anisotropic Stress in a Manganite Thin Film
We performed resonant and nonresonant x-ray diffraction studies of a
Nd0.5Sr0.5MnO3 thin film that exhibits a clear first-order transition. Lattice
parameters vary drastically at the metal-insulator transition at 170K (=T_MI),
and superlattice reflections appear below 140K (=T_CO). The electronic
structure between T_MI and T_CO is identified as A-type antiferromagnetic with
the d_{x2-y2} ferroorbital ordering. Below T_CO, a new type of antiferroorbital
ordering emerges. The accommodation of the large lattice distortion at the
first-order phase transition and the appearance of the novel orbital ordering
are brought about by the anisotropy in the substrate, a new parameter for the
phase control.Comment: 4pages, 4figure
Ultrafast Photoinduced Formation of Metallic State in a Perovskite-type Manganite with Short Range Charge and Orbital Order
Femtosecond reflection spectroscopy was performed on a perovskite-type
manganite, Gd0.55Sr0.45MnO3, with the short-range charge and orbital order
(CO/OO). Immediately after the photoirradiation, a large increase of the
reflectivity was detected in the mid-infrared region. The optical conductivity
spectrum under photoirradiation obtained from the Kramers-Kronig analyses of
the reflectivity changes demonstrates a formation of a metallic state. This
suggests that ferromagnetic spin arrangements occur within the time resolution
(ca. 200 fs) through the double exchange interaction, resulting in an ultrafast
CO/OO to FM switching.Comment: 4 figure
Size of Orbital Ordering Domain Controlled by the Itinerancy of the 3d Electrons in a Manganite Thin Film
An electronic effect on a macroscopic domain structure is found in a strongly
correlated half-doped manganite film NdSrMnO3 grown on a (011)
surface of SrTiO3. The sample has a high-temperature (HT) phase free from
distortion above 180K and two low-temperature (LT) phases with a large
shear-mode strain and a concomitant twin structure. One LT phase has a large
itinerancy (A-type), and the other has a small itinerancy (CE-type), while the
lattice distortions they cause are almost equal. Our x ray diffraction
measurement shows that the domain size of the LT phase made by the HT-CE
transition is much smaller than that by the HT-A transition, indicating that
the difference in domain size is caused by the electronic states of the LT
phases.Comment: 9 pages, 4 figure
An X-Ray Induced Structural Transition in La_0.875Sr_0.125MnO_3
We report a synchrotron x-ray scattering study of the magnetoresistive
manganite La_0.875Sr_0.125MnO_3. At low temperatures, this material undergoes
an x-ray induced structural transition at which charge ordering of Mn^3+ and
Mn^4+ ions characteristic to the low-temperature state of this compound is
destroyed. The transition is persistent but the charge-ordered state can be
restored by heating above the charge-ordering transition temperature and
subsequently cooling. The charge-ordering diffraction peaks, which are
broadened at all temperatures, broaden more upon x-ray irradiation, indicating
the finite correlation length of the charge-ordered state. Together with the
recent reports on x-ray induced transitions in Pr_(1-x)Ca_xMnO_3, our results
demonstrate that the photoinduced structural change is a common property of the
charge-ordered perovskite manganites.Comment: 5 pages, 4 embedded EPS figures; significant changes in the data
analysis mad
Near-Optimal Scheduling for LTL with Future Discounting
We study the search problem for optimal schedulers for the linear temporal
logic (LTL) with future discounting. The logic, introduced by Almagor, Boker
and Kupferman, is a quantitative variant of LTL in which an event in the far
future has only discounted contribution to a truth value (that is a real number
in the unit interval [0, 1]). The precise problem we study---it naturally
arises e.g. in search for a scheduler that recovers from an internal error
state as soon as possible---is the following: given a Kripke frame, a formula
and a number in [0, 1] called a margin, find a path of the Kripke frame that is
optimal with respect to the formula up to the prescribed margin (a truly
optimal path may not exist). We present an algorithm for the problem; it works
even in the extended setting with propositional quality operators, a setting
where (threshold) model-checking is known to be undecidable
CSO validator: improving manual curation workflow for biological pathways
Summary: Manual curation and validation of large-scale biological pathways are required to obtain high-quality pathway databases. In a typical curation process, model validation and model update based on appropriate feedback are repeated and requires considerable cooperation of scientists. We have developed a CSO (Cell System Ontology) validator to reduce the repetition and time during the curation process. This tool assists in quickly obtaining agreement among curators and domain experts and in providing a consistent and accurate pathway database
Layer dynamics of a freely standing smectic-A film
We study the hydrodynamics of a freely-standing smectic-A film in the
isothermal, incompressible limit theoretically by analyzing the linearized
hydrodynamic equations of motion with proper boundary conditions. The dynamic
properties for the system can be obtained from the response functions for the
free surfaces. Permeation is included and its importance near the free surfaces
is discussed. The hydrodynamic mode structure for the dynamics of the system is
compared with that of bulk systems. We show that to describe the dynamic
correlation functions for the system, in general, it is necessary to consider
the smectic layer displacement and the velocity normal to the layers,
, together. Finally, our analysis also provides a basis for the
theoretical study of the off-equilibrium dynamics of freely-standing smectic-A
films.Comment: 22 pages, 4 figure
Soft spin waves in the low temperature thermodynamics of Pr_{0.7}Ca_{0.3}MnO_{3}
We present a detailed magnetothermal study of Pr(0.7)Ca(0.3)MnO(3), a
perovskite manganite in which an insulator-metal transition can be driven by
magnetic field, but also by pressure, visible light, x-rays, or high currents.
We find that the field-induced transition is associated with an enormous
release of energy which accounts for its strong irreversibility. In the
ferromagnetic metallic state, specific heat and magnetization measurements
indicate a much smaller spin wave stiffness than that seen in any other
manganite, which we attribute to spin waves among the ferromagnetically ordered
Pr moments. The coupling between the Pr and Mn spins may also provide a basis
for understanding the low temperature phase diagram of this most unusual
manganite.Comment: 10 pages, LATEX, 5 PDF figures, corrected typo
- …