42,691 research outputs found

    Final stare interaction enhancement effect on the near threshold p\bar p system in B^\pm\to p\bar p \p^\pm decay

    Full text link
    We discuss the low-mass enhancement effect in the baryon-antibaryon invariant mass in three-body baryonic B decays using final state interactions in the framework of Regge theory. We show that the rescattering between baryonic pair can reproduce the observed mass spectrum.Comment: 7 pages, 11 figure

    Nondecoupling of Heavy Fermions and a Special Yukawa Texture

    Full text link
    Talk based on work entitled ``Yukawa textures, new physics and nondecoupling,'' done in collaboration with G. C. Branco and J. I. Silva-Marcos, arXiv:hep-ph/0612252, to appear in Phys. Rev. D. In this work we pointed out that New Physics can play an important r\^ ole in rescuing some of the Yukawa texture zero ans\" atze which would otherwise be eliminated by the recent, more precise measurements of VCKMV_{CKM}. We have shown that the presence of an isosinglet vector-like quark which mixes with standard quarks, can render viable a particularly interesting four texture zero Yukawa ansatz. The crucial point is the nondecoupling of the effects of the isosinglet quark, even for arbitrary large values of its mass.Comment: Invited talk at CTP Symposium on Supersymmetry at LHC: Theoretical and Experimental Prospectives, Cairo, Egypt, 11-14 Mar 200

    Systematic study of the symmetry energy coefficient in finite nuclei

    Full text link
    The symmetry energy coefficients in finite nuclei have been studied systematically with a covariant density functional theory (DFT) and compared with the values calculated using several available mass tables. Due to the contamination of shell effect, the nuclear symmetry energy coefficients extracted from the binding energies have large fluctuations around the nuclei with double magic numbers. The size of this contamination is shown to be smaller for the nuclei with larger isospin value. After subtracting the shell effect with the Strutinsky method, the obtained nuclear symmetry energy coefficients with different isospin values are shown to decrease smoothly with the mass number AA and are subsequently fitted to the relation 4asymA=bvA−bsA4/3\dfrac{4a_{\rm sym}}{A}=\dfrac{b_v}{A}-\dfrac{b_s}{A^{4/3}}. The resultant volume bvb_v and surface bsb_s coefficients from axially deformed covariant DFT calculations are 121.73121.73 and 197.98197.98 MeV respectively. The ratio bs/bv=1.63b_s/b_v=1.63 is in good agreement with the value derived from the previous calculations with the non-relativistic Skyrme energy functionals. The coefficients bvb_v and bsb_s corresponding to several available mass tables are also extracted. It is shown that there is a strong linear correlation between the volume bvb_v and surface bsb_s coefficients and the ratios bs/bvb_s/b_v are in between 1.6−2.01.6-2.0 for all the cases.Comment: 16 pages, 6 figure

    Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite

    Full text link
    We present a detailed magnetic study of the Pr1/3Ca2/3MnO3 manganite, where we observe the presence of small ferromagnetic (FM) domains (diameter ~ 10A) immersed within the charge-ordered antiferromagnetic (AFM) host. Due to the interaction of the FM nanodroplets with a disordered AFM shell, the low-temperature magnetization loops present exchange bias (EB) under cooling in an applied magnetic field. Our analysis of the cooling field dependence of the EB yields an antiferromagnetic interface exchange coupling comparable to the bulk exchange constant of the AFM phase. We also observe training effect of the EB, which is successfully described in terms of a preexisting relaxation model developed for other classical EB systems. This work provides the first evidence of intrinsic interface exchange coupling in phase separated manganites.Comment: 7 pages, 6 figure

    The structure of electronic polarization and its strain dependence

    Full text link
    The \phi(\kpp)\sim \kpp relation is called polarization structure. By density functional calculations, we study the polarization structure in ferroelectric perovskite PbTiO3_3, revealing (1) the \kpp point that contributes most to the electronic polarization, (2) the magnitude of bandwidth, and (3) subtle curvature of polarization dispersion. We also investigate how polarization structure in PbTiO3_3 is modified by compressive inplane strains. The bandwidth of polarization dispersion in PbTiO3_3 is shown to exhibit an unusual decline, though the total polarization is enhanced. As another outcome of this study, we formulate an analytical scheme for the purpose of identifying what determine the polarization structure at arbitrary \kpp points by means of Wannier functions. We find that \phi(\kpp) is determined by two competing factors: one is the overlaps between neighboring Wannier functions within the plane {\it perpendicular} to the polarization direction, and the other is the localization length {\it parallel} to the polarization direction. Inplane strain increases the former while decreases the latter, causing interesting non-monotonous effects on polarization structure. Finally, polarization dispersion in another paradigm ferroelectric BaTiO3_3 is discussed and compared with that of PbTiO3_3.Comment: 5 Figure
    • …
    corecore