3,851 research outputs found

    Should patients with lone atrial fibrillation be treated with anticoagulant therapy?

    Get PDF

    Empirical modeling of the quiet time nightside magnetosphere

    Get PDF
    Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko (1989) but is modified by the addition of an inner eastward ring current at a radial distance of ∼3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko (1987) such that the former dominates the magnetic field in the inner magnetosphere, whereas the latter prevails in the distant tail. The distribution of plasma pressure, which is required to balance the magnetic force for each of these two field models, is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This effort is the first attempt to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of ∼3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between ∼2 and ∼35 RE

    Evaluation on the analogy between the dynamic magnetosphere and a forced and/or self-organized critical system

    No full text
    International audienceThe dissipation power and size of auroral blobs are investigated in detail to examine the possible analogy between the dynamic magnetosphere and a forced and/or self-organized critical system. The distributions of these auroral parameters are sorted in terms of different levels of activity, namely substorms, pseudo-breakups, and quiet conditions. A power law (scale-free) component is seen in all these distributions. In addition, a peak distribution is found for substorm intervals and a hump for pseudo-breakup intervals. The peak distribution is present prominently during magnetic storms, i.e. when the magnetosphere is strongly driven by the solar wind. It is interpreted that the scale-free component is associated with the activity of the diffuse aurora, corresponding to disturbances at all permissible scales within the plasma sheet. Ionospheric feedback appears to be essential for the presence of two components in the distribution for auroral dissipation power. These results are consistent with the concept that the magnetosphere is in a forced and/or self-organized critical state, although they do not constitute conclusive evidence for the analogy

    Testing the hypothesis of the Earth's magnetosphere behaving like an avalanching system

    No full text
    International audienceThe global auroral dissipation power as observed by the imager on the Polar spacecraft is used as a proxy for the power dissipation of the Earth's magnetosphere to examine whether or not the magnetosphere is an avalanching system. It is found that the probability density distributions for the area and power of auroral activity sites have a power law component within a finite scale range, suggestive of a scale-free nature in this finite-size system. This property is robust, prevailing with variations in the threshold used to define auroral activity sites and in the strength of the external driver, namely, the solar wind. The statistical characteristics on the temporal evolution of auroral sites are then examined, which leads to a criterion that can be used to predict about 42min in advance the total energy dissipation during the lifetime of an auroral activity site. The scale-free characteristics of auroral activity appears to be an intrinsic feature of the magnetosphere based on a comparison of the probability density distribution in the total auroral brightness power with that of the solar wind power input parameters in the same period as the auroral observations. These results are consistent with the hypothesis of the magnetosphere behaving like an avalanching system

    Time development of electric fields and currents in space plasmas

    No full text
    International audienceTwo different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1) some limitations of the Bu approach in solving the time development of electric fields and currents, (2) the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3) the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms

    An Integro-Differential Equation Arising from an Electrochemistry Model

    Get PDF
    In this paper, we prove the existence and uniqueness of steady-state solutions for a system of equations arising from a model in electrochemistry. The same result was established by the authors in an earlier paper under the additional assumptions that the space-dimension N = 2 and the concentrations of the charged ions satisfy an electro-neutrality condition

    Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene

    Get PDF
    We investigated the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrated that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. Our observations are accounted for by considering the interplay between photo-induced changes of both the Drude weight and the carrier scattering rate. Notably, we observed multiple sign changes in the temporal photoconductivity dynamics at low carrier density. This behavior reflects the non-monotonic temperature dependence of the Drude weight, a unique property of massless Dirac fermions

    Bilateral Anterior Shoulder Dislocation

    Get PDF
    Introduction: Unilateral anterior shoulder dislocation is one of the most common problems encountered in orthopedic practice. However, simultaneous bilateral anterior dislocation of the shoulders is quite rare. Case Presentation: We report a case of a 75-year-old woman presented with simultaneous bilateral anterior shoulder dislocation following a trauma, complicated with a traction injury to the posterior cord of the brachial plexus. Conclusions: Bilateral anterior shoulder dislocation is very rare. The excessive traction force during closed reduction may lead to nerve palsy. Clear documentation of neurovascular status and adequate imaging before and after a reduction should be performed

    HEA-Loc: A robust localization algorithm for sensor networks of diversified topologies

    Get PDF
    In recent years, localization in a variety of Wireless Sensor Networks (WSNs) is a compelling but elusive goal. Several algorithms that use different methodologies have been proposed to achieve this goal. The performances of these algorithms depend on several factors, such as the sensor node placement, anchor deployment or network topology. In this paper, we propose a robust localization algorithm called Hybrid Efficient and Accurate Localization (HEA-Loc). HEA-Loc combines two techniques, Extended Kalman Filter (EKF) and Proximity-Distance Map (PDM) to improve localization accuracy. It is distributed in nature and works well in various scenarios as it is less susceptible to anchors deployment and the network topology. Furthermore, HEA-Loc has strong robustness and it can work well even the measurement errors are large. Simulation results show that HEA-Loc outperforms existing algorithms in both computational complexity and communication overhead. ©2010 IEEE.published_or_final_versionThe IEEE Wireless Communications and Networking Conference (WCNC 2010), Sydney, NSW., 18-21 April 2010. In Proceedings of WCNC, 2010, p. 1-

    Simultaneous structural and control optimization via linear quadratic regulator eigenstructure assignment

    Get PDF
    A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented
    • …
    corecore