6,288 research outputs found

    Complete Semiclassical Treatment of the Quantum Black Hole Problem

    Get PDF
    Two types of semiclassical calculations have been used to study quantum effects in black hole backgrounds, the WKB and the mean field approaches. In this work we systematically reconstruct the logical implications of both methods on quantum black hole physics and provide the link between these two approaches. Our conclusions completely support our previous findings based solely on the WKB method: quantum black holes are effectively p-brane excitations and, consequently, no information loss paradox exists in this problem.Comment: 14 pages, REVTE

    Conjectures on Non-Local Effects in String Black Holes

    Full text link
    We consider modifications to general relativity by the non-local (classical and quantum) string effects for the case of a D-dimensional Scwarzschild black hole. The classical non-local effects do not alter the spacetime topology (the horizon remains unshifted, at least perturbatively). We suggest a simple analytic continuation of the perturbative result into the non-perturbative domain, which eliminates the black hole singularity at the origin and yields an ultraviolet-finite theory of quantum gravity. We investigate the quantum non- local effects (including massive modes) and argue that the inclusion of these back reactions resolves the problem of the thermal spectrum in the semi- classical approach of field quantization in a black hole background, through the bootstrap condition. The density of states for both the quantum and thermal interpretation of the WKB formula are finally shown to differ quant- itatively when including the non-local effects.Comment: 16 pages, REVTE

    Black Extended Objects, Naked Singularities and P-Branes

    Full text link
    We treat the horizons of charged, dilaton black extended objects as quantum mechanical objects. We show that the S matrix for such an object can be written in terms of a p-brane-like action. The requirements of unitarity of the S matrix and positivity of the p-brane tension equivalent severely restrict the number of space-time dimensions and the allowed values of the dilaton parameter a. Generally, black objects transform at the extremal limit into p-branes.Comment: 9 pages, REVTE

    Bosonic D-branes at finite temperature with an external field

    Get PDF
    Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T≠0T\neq 0 for bosonic open strings with a constant gauge field FabF_{ab} coupled to the boundary. The construction is done in the framework of thermo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states heve the interpretation of DpDp-brane at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a DpDp-brane state is computed and analysed. It is interpreted as the entropy of the DpDp-brane at finite temperature.Comment: 21 pages, Latex, revised version with minor corrections and references added, to be published in Phys. Rev.

    Semiparametric estimation exploiting covariate independence in two-phase randomized trials.

    Get PDF
    Recent results for case-control sampling suggest when the covariate distribution is constrained by gene-environment independence, semiparametric estimation exploiting such independence yields a great deal of efficiency gain. We consider the efficient estimation of the treatment-biomarker interaction in two-phase sampling nested within randomized clinical trials, incorporating the independence between a randomized treatment and the baseline markers. We develop a Newton-Raphson algorithm based on the profile likelihood to compute the semiparametric maximum likelihood estimate (SPMLE). Our algorithm accommodates both continuous phase-one outcomes and continuous phase-two biomarkers. The profile information matrix is computed explicitly via numerical differentiation. In certain situations where computing the SPMLE is slow, we propose a maximum estimated likelihood estimator (MELE), which is also capable of incorporating the covariate independence. This estimated likelihood approach uses a one-step empirical covariate distribution, thus is straightforward to maximize. It offers a closed-form variance estimate with limited increase in variance relative to the fully efficient SPMLE. Our results suggest exploiting the covariate independence in two-phase sampling increases the efficiency substantially, particularly for estimating treatment-biomarker interactions

    Dilatonic Black Holes, Naked Singularities and Strings

    Full text link
    We extend a previous calculation which treated Schwarschild black hole horizons as quantum mechanical objects to the case of a charged, dilaton black hole. We show that for a unique value of the dilaton parameter `a', which is determined by the condition of unitarity of the S matrix, black holes transform at the extremal limit into strings.Comment: 8 pages, REVTE
    • …
    corecore