844 research outputs found
The Study of Goldstone Modes in =2 Bilayer Quantum Hall Systems
At the filling factor =2, the bilayer quantum Hall system has three
phases, the spin-ferromagnet phase, the spin singlet phase and the canted
antiferromagnet (CAF) phase, depending on the relative strength between the
Zeeman energy and interlayer tunneling energy. We present a systematic method
to derive the effective Hamiltonian for the Goldstone modes in these three
phases. We then investigate the dispersion relations and the coherence lengths
of the Goldstone modes. To explore a possible emergence of the interlayer phase
coherence, we analyze the dispersion relations in the zero tunneling energy
limit. We find one gapless mode with the linear dispersion relation in the CAF
phase.Comment: 13 pages, no figures. One reference is added. Typos correcte
Magnetotransport Study of the Canted Antiferromagnetic Phase in Bilayer Quantum Hall State
Magnetotransport properties are investigated in the bilayer quantum Hall
state at the total filling factor . We measured the activation energy
elaborately as a function of the total electron density and the density
difference between the two layers. Our experimental data demonstrate clearly
the emergence of the canted antiferromagnetic (CAF) phase between the
ferromagnetic phase and the spin-singlet phase. The stability of the CAF phase
is discussed by the comparison between experimental results and theoretical
calculations using a Hartree-Fock approximation and an exact diagonalization
study. The data reveal also an intrinsic structure of the CAF phase divided
into two regions according to the dominancy between the intralayer and
interlayer correlations.Comment: 6 pages, 7 figure
- …