504 research outputs found

    Feedback-free optical cavity with self-resonating mechanism

    Full text link
    We demonstrated the operation of a high finesse optical cavity without utilizing an active feedback system to stabilize the resonance. The effective finesse, which is a finesse including the overall system performance, of the cavity was measured to be 394,000±10,000394,000 \pm 10,000, and the laser power stored in the cavity was 2.52±0.132.52 \pm 0.13 kW, which is approximately 187,000 times greater than the incident power to the cavity. The stored power was stabilized with a fluctuation of 1.7%1.7 \%, and we confirmed continuous cavity operation for more than two hours. This result has the potential to trigger an innovative evolution for applications that use optical resonant cavities such as compact photon sources with laser-Compton scattering or cavity enhanced absorption spectroscopy.Comment: 5 pages, 7 figure

    Niobium based intermetallics as a source of high-current/high-magnetic field superconductors

    Full text link
    The article is focused on low temperature intermetallic A15 superconducting wires development for Nuclear Magnetic Resonance, NMR, and Nuclear Magnetic Imaging, MRI, magnets and also on cryogen-free magnets. There are many other applications which would benefit from new development such as future Large Hadron Collider to be built from A15 intermetallic conductors. This paper highlights the current status of development of the niobium based intermetallics with special attention to Nb 3 (Al 1-x, Ge x). Discussion is focused on the materials science aspects of conductor manufacture, such as b-phase (A15) formation, with particular emphasis on the maximisation of the superconducting parameters, such as critical current density, Jc, critical temperature, Tc, and upper critical field, Hc2 . Many successful manufacturing techniques of the potential niobium-aluminide intermetallic superconducting conductors, such as solid-state processing, liquid-solid processing, rapid heating/cooling processes, are described, compared and assessed. Special emphasis has been laid on conditions under which the Jc (B) peak effect occurs in some of the Nb3(Al,Ge) wires. A novel electrodeoxidizing method developed in Cambridge whereby the alloys and intermetallics are produced cheaply making all superconducting electromagnetic devices, using low cost LTCs, more cost effective is presented.This new technique has potential to revolutionise the existing superconducting industry enabling reduction of cost orders of magnitude.Comment: Paper presented at EUCAS'01 conference, Copenhagen, 26-30 August 200

    Superconductivity and Density Wave in the Quasi-One-Dimensional Systems: Renormalization Group Study

    Full text link
    The anisotropic superconductivity and the density wave have been investigated by applying the Kadanoff-Wilson renormalization group technique to the quasi-one-dimensional system with finite-range interactions. It is found that a temperature (T) dependence of response functions is proportional to exp(1/T) in a wide region of temperature even within the one-loop approximation. Transition temperatures are calculated to obtain the phase diagram of the quasi-one-dimensional system, which is compared with that of the pure-one-dimensional system. Next-nearest neighbor interactions (V_2) induce large charge fluctuations, which suppress the d_{x^2 -y^2}-wave singlet superconducting (dSS) state and enhance the f-wave triplet superconducting (fTS) state. From this effect, the transition temperature of fTS becomes comparable to that of dSS for large V_2, so that field-induced f-wave triplet pairing could be possible. These features are discussed to comprehend the experiments on the (TMTSF)_2PF_6 salt.Comment: 8 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Automatic Fine Alignment and Pointing of Movable Telescopes using Point and Template Matching

    Get PDF
    Proceedings of the 2005 IEEE International Conference on Robotics and Biomimetic
    corecore