65 research outputs found

    Radioactive decays at limits of nuclear stability

    Full text link
    The last decades brought an impressive progress in synthesizing and studying properties of nuclides located very far from the beta stability line. Among the most fundamental properties of such exotic nuclides, usually established first, is the half-life, possible radioactive decay modes, and their relative probabilities. When approaching limits of nuclear stability, new decay modes set in. First, beta decays become accompanied by emission of nucleons from highly excited states of daughter nuclei. Second, when the nucleon separation energy becomes negative, nucleons start to be emitted from the ground state. Here, we present a review of the decay modes occurring close to the limits of stability. The experimental methods used to produce, identify and detect new species and their radiation are discussed. The current theoretical understanding of these decay processes is overviewed. The theoretical description of the most recently discovered and most complex radioactive process - the two-proton radioactivity - is discussed in more detail.Comment: Review, 68 pages, 39 figure

    Long-lived isomeric states and quasiparticle band structures in neutron-rich Gd 162,164 nuclei from β decay

    Get PDF
    Neutron-rich nuclei Eu162,164 were produced by bombarding a proton beam on a U238 target at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory and mass separating the Eu162,164 products. New level schemes and new γ-ray transitions of the daughters Gd162,164 were identified from β-decay spectroscopy studies. Half-lives of the Eu162,164 were remeasured to clarify the previous ambiguous results. Two quasiparticle band structures were built and compared with neighboring nuclei. The β and γ bands were extended in Gd162 and a γ band was extended in Gd164. Half-lives of the isomeric states at (6-) 1449 keV in Gd162 and (4-) 1096 keV in Gd164 were measured to be 99(3) μs and 0.56(3) μs, respectively. Projected shell model calculations were performed and found to be in good agreement with all of the experimental data

    Identification of new transitions and levels in Gd 163 from β -decay studies

    Get PDF
    Background: Neutron-rich nuclei in the mass region around A=160 have been and will continue to be of interest for the study of nuclear structure because of the rapid onset of deformation between 88 and 90 neutrons. The observation of detailed changes in nuclear structures within this mass region has provided and will continue to provide insight into the nuclear force. Purpose: Investigations of γ rays emitted following Eu163 β-decay to Gd163 have been performed for evaluation of the nuclear structure of Gd163. Method: Data were collected at the LeRIBSS station of the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory with an array of four Clover HPGe detectors for γ-rays and two plastic scintillators for β detection. The γ rays were identified as belonging to Gd163 via mass selection and γ-γ-β, x-ray-γ, or γ-γ coincidences. Results: In total 107 new γ-ray transitions were observed in Gd163 from 53 newly identified levels. Conclusions: The structure of Gd163 has been identified for the first time. This structure has been evaluated in comparison to projected shell model, and potential energy surface calculations with good agreement

    Decays of the Three Top Contributors to the Reactor ν - e High-Energy Spectrum, Rb 92, y 96gs, and Cs 142, Studied with Total Absorption Spectroscopy

    Get PDF
    We report total absorption spectroscopy measurements of Rb92, Y96gs, and Cs142 β decays, which are the most important contributors to the high energy ν-e spectral shape in nuclear reactors. These three β decays contribute 43% of the ν-e flux near 5.5 MeV emitted by nuclear reactors. This ν-e energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of U238 with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β-decay pattern that is similar to recent measurements of Rb92, with a ground-state to ground-state β feeding of 91(3)%. We verify the Y96gs ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β-decay feedings of Cs142, reducing the β feeding to Ba142 states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν-e flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%

    Updated β -decay measurement of neutron-rich Cu 74

    Get PDF
    The β decay of neutron-rich Cu74 has been studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. By using a high-resolution mass separator a purified Cu74 beam was obtained, thus allowing decay through its isobar chain to stable Ge74 without any decay chain member dominating. A total of 170γ rays were associated with Cu74β decay with 111 placed in the Zn74 level scheme. Updated β feeding intensities and estimated log(ft) values are presented, and new Jπ assignments are proposed using shell model calculations. The progression of simulated total absorption γ-ray spectroscopy (TAGS) based on proposed levels and β-feeding values from previous measurements to this evaluation are presented and demonstrate the need for a TAGS measurements for this and similar decays

    <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi></mml:math> -delayed neutron emissions from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>50</mml:mn></mml:mrow></mml:math> gallium isotopes

    Get PDF
    β-delayed γ-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of He3 neutron counters (BRIKEN). β-2n-γ events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the γ branching ratios were obtained for these isotopes, and the neutron emission probabilities (Pxn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P1n and P2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P2n/P1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and γ branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J≤3 for the unknown ground-state spin of the odd-odd nucleus Ga86, from the Iγ(4+→2+)/Iγ(2+→0+) ratio of Ga84 and the P2n/P1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to γ measurements of the multineutron emitters
    corecore