32 research outputs found

    Regularized reconstruction in quantitative SPECT using CT side information from hybrid imaging

    Full text link
    A penalized-likelihood (PL) SPECT reconstruction method using a modified regularizer that accounts for anatomical boundary side information was implemented to achieve accurate estimates of both the total target activity and the activity distribution within targets. In both simulations and experimental I-131 phantom studies, reconstructions from (1) penalized likelihood employing CT-side information-based regularization (PL-CT), (2) penalized likelihood with edge preserving regularization (no CT) and (3) penalized likelihood with conventional spatially invariant quadratic regularization (no CT) were compared with (4) ordered subset expectation maximization (OSEM), which is the iterative algorithm conventionally used in clinics for quantitative SPECT. Evaluations included phantom studies with perfect and imperfect side information and studies with uniform and non-uniform activity distributions in the target. For targets with uniform activity, the PL-CT images and profiles were closest to the 'truth', avoided the edge offshoots evident with OSEM and minimized the blurring across boundaries evident with regularization without CT information. Apart from visual comparison, reconstruction accuracy was evaluated using the bias and standard deviation (STD) of the total target activity estimate and the root mean square error (RMSE) of the activity distribution within the target. PL-CT reconstruction reduced both bias and RMSE compared with regularization without side information. When compared with unregularized OSEM, PL-CT reduced RMSE and STD while bias was comparable. For targets with non-uniform activity, these improvements with PL-CT were observed only when the change in activity was matched by a change in the anatomical image and the corresponding inner boundary was also used to control the regularization. In summary, the present work demonstrates the potential of using CT side information to obtain improved estimates of the activity distribution in targets without sacrificing the accuracy of total target activity estimation. The method is best suited for data acquired on hybrid systems where SPECT-CT misregistration is minimized. To demonstrate clinical application, the PL reconstruction with CT-based regularization was applied to data from a patient who underwent SPECT/CT imaging for tumor dosimetry following I-131 radioimmunotherapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85409/1/pmb10_9_007.pd

    A study of SPECT/CT camera stability for quantitative imaging

    Get PDF
    BACKGROUND: The purpose of this study was twofold: to evaluate the quantitative stability of a SPECT/CT gamma camera over time and to determine if daily flood acquisitions can reliably serve as calibration factors for quantitative SPECT. Using a cylindrical water phantom filled with measured amounts of (99m)Tc, factors were calculated to convert counts/cc to activity/cps. Measurements were made over an 18-month period. System sensitivity data calculated from (57)Co daily quality assurance (DQA) flood acquisitions were then compared to the (99m)Tc calibration factors to determine the relationship of the factors. RESULTS: The coefficient of variation is 2.7 % for the (99m)Tc cylinder conversion factors and 2.6 % for the (57)Co DQA flood data. The greatest difference between the cylinder conversion factors and the flood data is less than 3 %. CONCLUSIONS: Based on the results, the camera was stable within 3 % over an 18-month time period. The daily flood source acquisitions can be a reliable source for tracking camera stability and may provide information on updating the calibration factor for quantitative imaging

    Accuracy of 131I tumor quantification in radioimmunotherapy using SPECT imaging with an ultra-high-energy collimator: Monte Carlo study

    Full text link
    Accuracy of 131I tumor quantification after radioimmunotherapy (RIT) was investigated for SPECT imaging with an ultra-high-energy (UHE) collimator designed for imaging 511-keV photons. METHODS: First, measurements and Monte Carlo simulations were carried out to compare the UHE collimator with a conventionally used, high-energy collimator. On the basis of this comparison, the UHE collimator was selected for this investigation, which was carried out by simulation of spherical tumors in a phantom. Reconstruction was by an expectation-maximization algorithm that included scatter and attenuation correction. Keeping the tumor activity constant, simulations were carried out to assess how volume-of-interest (VOI) counts vary with background activity, radius of rotation (ROR), tumor location, and size. The constant calibration factor for quantification was determined from VOI counts corresponding to a 3.63-cm-radius sphere of known activity. Tight VOIs corresponding to the physical size of the spheres or tumors were used. RESULTS: Use of the UHE collimator resulted in a large reduction in 131I penetration, which is especially significant in RIT where background uptake is high. With the UHE collimator, typical patient images showed an improvement in contrast. Considering the desired geometric events, sensitivity was reduced, but only by a factor of 1.6. Simulation results for a 3.63-cm-radius tumor showed that VOI counts vary with background, location, and ROR by less than 3.2%, 3%, and 5.3%, respectively. The variation with tumor size was more significant and was a function of the background. Good quantification accuracy (<6.5% error) was achieved when tumor size was the same as the sphere size used in the calibration, irrespective of the other parameters. For smaller tumors, activities were underestimated by up to -15% for the 2.88-cm-radius sphere, -23% for the 2.29-cm-radius sphere, and -47% for the 1.68-cm-radius sphere. CONCLUSION: Reasonable accuracy can be achieved for VOI quantification of 131I using SPECT with an UHE collimator and a constant calibration factor. Difference in tumor size relative to the size of the calibration sphere had the biggest effect on accuracy, and recovery coefficients are needed to improve quantification of small tumors

    Characterization of scatter and penetration using Monte Carlo simulation in 131I imaging

    Full text link
    In 131I SPECT, image quality and quantification accuracy are degraded by object scatter as well as scatter and penetration in the collimator. The characterization of energy and spatial distributions of scatter and penetration performed in this study by Monte Carlo simulation will be useful for the development and evaluation of techniques that compensate for such events in 131I imaging. METHODS: First, to test the accuracy of the Monte Carlo model, simulated and measured data were compared for both a point source and a phantom. Next, simulations to investigate scatter and penetration were performed for four geometries: point source in air, point source in a water-filled cylinder, hot sphere in a cylinder filled with nonradioactive water, and hot sphere in a cylinder filled with radioactive water. Energy spectra were separated according to order of scatter, type of interaction, and gamma-ray emission energy. A preliminary evaluation of the triple-energy window (TEW) scatter correction method was performed. RESULTS: The accuracy of the Monte Carlo model was verified by the good agreement between measured and simulated energy spectra and radial point spread functions. For a point source in air, simulations show that 73% of events in the photopeak window had either scattered in or penetrated the collimator, indicating the significance of collimator interactions. For a point source in a water-filled phantom, the separated energy spectra showed that a 20% photopeak window can be used to eliminate events that scatter more than two times in the phantom. For the hot sphere phantoms, it was shown that in the photopeak region the spectrum shape of penetration events is very similar to that of primary (no scatter and no penetration) events. For the hot sphere regions of interest, the percentage difference between true scatter counts and the TEW estimate of scatter counts was <12%. CONCLUSION: In 131I SPECT, object scatter as well as collimator scatter and penetration are significant. The TEW method provides a reasonable correction for scatter, but the similarity between the 364-keV primary and penetration energy spectra makes it difficult to compensate for these penetration events using techniques that are based on spectral analysis

    Accurate dosimetry in I-131 radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation

    Full text link
    I-131 radionuclide therapy studies have not shown a strong relationship between tumor absorbed dose and response, possibly due to inaccuracies in activity quantification and dose estimation. The goal of this work was to establish the accuracy of I-131 activity quantification and absorbed dose estimation when patient-specific, 3-dimensional (3D) methods are used for SPECT reconstruction and for absorbed dose calculation. Methods: Clinically realistic voxel-phantom simulations were used in the evaluation of activity quantification and dosimetry. SPECT reconstruction was performed using an ordered-subsets expectation maximization (OSEM) algorithm with compensation for scatter, attenuation, and 3D detector response. Based on the SPECT image and a patient-specific density map derived from CT, 3D dosimetry was performed using a newly implemented Monte Carlo code. Dosimetry was evaluated by comparing mean absorbed dose estimates calculated directly from the defined phantom activity map with those calculated from the SPECT image of the phantom. Finally, the 3D methods were applied to a radioimmunotherapy patient, and the mean tumor absorbed dose from the new calculation was compared with that from conventional dosimetry obtained from conjugate-view imaging. Results: Overall, the accuracy of the SPECT-based absorbed dose estimates in the phantom was > 12% for targets down to 16 mL and up to 35% for the smallest 7-mL tumor. To improve accuracy in the smallest tumor, more OSEM iterations may be needed. The relative SD from multiple realizations was < 3% for all targets except for the smallest tumor. For the patient, the mean tumor absorbed dose estimate from the new Monte Carlo calculation was 7% higher than that from conventional dosimetry. Conclusion: For target sizes down to 16 mL, highly accurate and precise dosimetry can be obtained with 3D methods for SPECT reconstruction and absorbed dose estimation. In the future, these methods can be applied to patients to potentially establish correlations between tumor regression and the absorbed dose statistics from 3D dosimetry

    Dosimetry in patients with B-cell lymphoma treated with [90Y]ibritumomab tiuxetan or [131I]tositumomab.

    Full text link
    Radioimmunotherapy involves the use of radiolabeled monoclonal antibodies (MAbs) to treat malignancy. The therapeutic effect is determined by the radiopharmaceutical, the radiation absorbed dose and previous treatments. There are currently two approved radiopharmaceuticals for the treatment of B-cell lymphoma - the 90Y-labeled ibritumomab and the 131I-labeled tositumomab. Both are directed against CD20, albeit not against the same epitope. This paper summarizes current results of dose-responses for normal tissues and tumours of [131I]tositumomab and [90Y]ibritumomab tiuxetan, discusses them in the context of dosimetry methods used and highlights the assumptions being made in the different dosimetry methodologies. Moreover, we wish to point at the possibility of performing low-cost therapy bremsstrahlung imaging for [90Y]ibritumomab tiuxetan to confirm biodistribution, and possibly also for dosimetric calculations
    corecore