1,029 research outputs found
Minimum Joint Depth for Moment Frames with High-Strength Materials
This paper reports results from four large-scale interior beam column connections without transverse beams or slabs tested under reversed cyclic displacements. The specimens, which included the first of interior beam-column connections constructed with Grade 100 (690) reinforcement with bar deformations similar to those available in U.S. practice, had Grade 60 or 100 (420 or 690) bars, 4 or 10 ksi (28 or 69 MPa) concrete, and varied column depthto-beam bar diameter ratios. The specimens all exhibited strengths greater than the nominal strength, retained at least 80% of their strength to drift ratios exceeding 5%, and exceeded ACI 374 acceptance criteria at a 3% drift ratio for components of special moment frames, demonstrating that well-detailed joints constructed with high-strength materials behave satisfactorily. The data add evidence that joints constructed with high-strength concrete exhibit less bond decay, and recommendations are made for accounting for this effect in design. Results from the specimen constructed with normal-strength materials, considered in the context of prior tests, suggest a need to increase the minimum joint depth for special moment frames. Considerable improvement in behavior associated with reduced bond damage within the joint is obtained from a 20% increase in the minimum column depth-to-beam bar diameter ratio required in ACI 318-19
Synuclein gamma predicts poor clinical outcome in colon cancer with normal levels of carcinoembryonic antigen
<p>Abstract</p> <p>Background</p> <p>Synuclein gamma (SNCG), initially identified as a breast cancer specific gene, is aberrantly expressed in many different malignant tumors but rarely expressed in matched nonneoplastic adjacent tissues. In this study, we investigated the prognostic potential of SNCG in colon cancer particularly in the patients with normal carcinoembryonic antigen (CEA) levels.</p> <p>Methods</p> <p>SNCG levels were assessed immunohistochemically in cancer tissues from 229 colon adenocarcinoma patients with a mean follow-up of 44 months. Correlations between SNCG levels and clinicopathologic features, preoperative serum CEA level, and clinical outcome were analyzed statistically using SPSS.</p> <p>Results</p> <p>SNCG levels in colon adenocarcinoma were closely associated with intravascular embolus and tumor recurrence but independent of preoperative serum CEA levels. SNCG expression was an independent prognostic factor of a shorter disease-free survival (DFS) and overall survival (OS) (<it>P </it>< 0.0001). Multivariate analysis revealed that both tissue SNCG and serum CEA were independent prognostic factors of DFS (<it>P </it>= 0.001, <0.0001, respectively) for 170 patients with colon adenocarcinomas. Importantly, SNCG remained a prognostic determinant of DFS and OS (<it>P </it>= 0.001, 0.002) for 97 patients with normal preoperative serum CEA level.</p> <p>Conclusions</p> <p>Our results suggest for the first time that SNCG is a new independent predicator for poor prognosis in patients with colon adenocarcinoma, including those with normal CEA levels. Combination of CEA with SNCG improves prognostic evaluation for patients with colon adenocarcinoma.</p
Observation of intensity squeezing in resonance fluorescence from a solid-state device
Intensity squeezing i.e. photon number fluctuations below the shot noise limit is a fundamental aspect of quantum optics and has wide applications in quantum metrology. It was predicted in 1979 that the intensity squeezing could be observed in resonance fluorescence from a two-level quantum system. Yet, its experimental observation in solid states was hindered by inefficiencies in generating, collecting and detecting resonance fluorescence. Here, we report the intensity squeezing in a single-mode fibre-coupled resonance fluorescence single-photon source based on a quantum dot-micropillar system. We detect pulsed single-photon streams with 22.6% system efficiency, which show subshot-noise intensity fluctuation with an intensity squeezing of . We estimate a corrected squeezing of at the first lens. The observed intensity squeezing provides the last piece of the fundamental picture of resonance fluorescence; which can be used as a new standard for optical radiation and in scalable quantum metrology with indistinguishable single photons.PostprintPeer reviewe
Multi-Band Exotic Superconductivity in the New Superconductor Bi4O4S3
Resistivity, Hall effect and magnetization have been investigated on the new
superconductor Bi4O4S3. A weak insulating behavior has been induced in the
normal state when the superconductivity is suppressed. Hall effect measurements
illustrate clearly a multiband feature dominated by electron charge carriers,
which is further supported by the magnetoresistance data. Interestingly, a kink
appears on the temperature dependence of resistivity at about 4 K at all high
magnetic fields when the bulk superconductivity is completely suppressed. This
kink can be well traced back to the upper critical field Hc2(T) in the low
field region, and is explained as the possible evidence of residual Cooper
pairs on the one dimensional chains.Comment: 5 pages, 5 figure
Spin-polarized current induced by a local exchange field in a silicene nanoribbon
A mechanism to generate a spin-polarized current in a two-terminal zigzag
silicene nanoribbon is predicted. As a weak local exchange field that is
parallel to the surface of silicene is applied on one of edges of the silicene
nanoribbon, a gap is opened in the corresponding gapless edge states but
another pair of gapless edge states with opposite spin are still protected by
the time-reversal symmetry. Hence, a spin-polarized current can be induced in
the gap opened by the local exchange field in this two-terminal system. What is
important is that the spin-polarized current can be obtained even in the
absence of Rashba spin-orbit coupling and in the case of the very weak exchange
filed. That is to say, the mechanism to generate the spin-polarized currents
can be easily realized experimentally.We also find that the spin-polarized
current is insensitive to weak disorder.Comment: 10 pages, 6 figure
Probing the isospin dependent mean field and nucleon nucleon cross section in the medium by the nucleon emissions
We study the isospin effects of the mean field and two-body collision on the
nucleon emissions at the intermediate energy heavy ion collisions by using an
isospin dependent transport theory. The calculated results show that the
nucleon emission number depends sensitively the isospin effect of
nucleon nucleon cross section and weakly on the isospin dependent mean field
for neutron-poor system in higher beam energy region . In particular, the
correlation between the medium correction of two-body collision and the
momentum dependent interaction enhances the dependence of nucleon emission
number on the isospin effect of nucleon nucleon cross section.
On the contrary, the ratio of the neutron proton ratio of the gas phase to
the neutron proton ratio of the liquid phase, i.e., the degree of isospin
fractionation depends sensitively on the
isospin dependent mean field and weakly on the isospin effect of two-body
collision for neutron-rich system in the lower beam energy region. In this
case, and are the probes for
extracting the information about the isospin dependent nucleon nucleon cross
section in the medium and the isospin dependent mean field,respectively.Comment: 4 pages,4 figure
- …