87 research outputs found

    Using time reversal symmetry for sensitive incoherent matter-wave Sagnac interferometry

    Full text link
    We present a theory of the transmission of incoherent guided matter-waves through Sagnac interferometers. Interferometer configurations with only one input and one output port have a property similar to the phase rigidity observed in the transmission through Aharonov-Bohm interferometers in coherent mesoscopic electronics. This property is connected to the existence of counterpropagating paths of equal length and enables the operation of such matter-wave interferometers with incoherent sources. High finesse interferometers of this kind have a rotation sensitivity inversely proportional to the square root of the finesse

    The Faraday Quantum Clock and Non-local Photon Pair Correlations

    Get PDF
    We study the use of the Faraday effect as a quantum clock for measuring traversal times of evanescent photons through magneto-refractive structures. The Faraday effect acts both as a phase-shifter and as a filter for circular polarizations. Only measurements based on the Faraday phase-shift properties are relevant to the traversal time measurements. The Faraday polarization filtering may cause the loss of non-local (Einstein-Podolsky-Rosen) two-photon correlations, but this loss can be avoided without sacrificing the clock accuracy. We show that a mechanism of destructive interference between consecutive paths is responsible for superluminal traversal times measured by the clock.Comment: 6 figure

    Dynamic Matter-Wave Pulse Shaping

    Full text link
    In this paper we discuss possibilities to manipulate a matter-wave with time-dependent potentials. Assuming a specific setup on an atom chip, we explore how one can focus, accelerate, reflect, and stop an atomic wave packet, with, for example, electric fields from an array of electrodes. We also utilize this method to initiate coherent splitting. Special emphasis is put on the robustness of the control schemes. We begin with the wave packet of a single atom, and extend this to a BEC, in the Gross-Pitaevskii picture. In analogy to laser pulse shaping with its wide variety of applications, we expect this work to form the base for additional time-dependent potentials eventually leading to matter-wave pulse shaping with numerous application

    Coupling between internal spin dynamics and external degrees of freedom in the presence of colored noise

    Full text link
    We observe asymmetric transition rates between Zeeman levels (spin-flips) of magnetically trapped atoms. The asymmetry strongly depends on the spectral shape of an applied noise. This effect follows from the interplay between the internal states of the atoms and their external degrees of freedom, where different trapped levels experience different potentials. Such insight may prove useful for controlling atomic states by the introduction of noise, as well as provide a better understanding of the effect of noise on the coherent operation of quantum systems.Comment: 5 pages, 4 figures; accepted to PR

    Motion of a condensate in a shaken and vibrating harmonic trap

    Full text link
    The dynamics of a Bose-Einstein condensate (BEC) in a time-dependent harmonic trapping potential is determined for arbitrary variations of the position of the center of the trap and its frequencies. The dynamics of the BEC wavepacket is soliton-like. The motion of the center of the wavepacket, and the spatially and temporally dependent phase (which affects the coherence properties of the BEC) multiplying the soliton-like part of the wavepacket, are analytically determined.Comment: Accepted for publication in J. Phys. B: At Mol Opt Phy

    One-mirror Fabry-Perot and one-slit Young interferometry

    Full text link
    We describe a new and distinctive interferometry in which a probe particle scatters off a superposition of locations of a single free target particle. In one dimension, probe particles incident on superposed locations of a single "mirror" can interfere as if in a Fabry-Perot interferometer; in two dimensions, probe particles scattering off superposed locations of a single "slit" can interfere as if in a two-slit Young interferometer. The condition for interference is loss of orthogonality of the target states and reduces, in simple examples, to transfer of orthogonality from target to probe states. We analyze experimental parameters and conditions necessary for interference to be observed.Comment: 5 pages, 2 figures, RevTeX, submitted to PR

    Organized Current Patterns in Disordered Conductors

    Full text link
    We present a general theory of current deviations in straight current carrying wires with random imperfections, which quantitatively explains the recent observations of organized patterns of magnetic field corrugations above micron-scale evaporated wires. These patterns originate from the most efficient electron scattering by Fourier components of the wire imperfections with wavefronts along the ±45∘\pm 45^{\circ} direction. We show that long range effects of surface or bulk corrugations are suppressed for narrow wires or wires having an electrically anisotropic resistivity
    • 

    corecore