1 research outputs found
Maximal Domains for Strategy-Proof or Maskin Monotonic Choice Rules
Domains of individual preferences for which the well-known impossibility Theorems of Gibbard-Satterthwaite and Muller-Satterthwaite do not hold are studied. First, we introduce necessary and sufficient conditions for a domain to admit non-dictatorial, Pareto efficient and either strategy-proof or Maskin monotonic social choice rules. Next, to comprehend the limitations the two Theorems imply for social choice rules, we search for the largest domains that are possible. Put differently, we look for the minimal restrictions that have to be imposed on the unrestricted domain to recover possibility results. It turns out
that, for such domains, the conditions of inseparable pair and of inseparable set yield the only maximal domains on which there exist non-dictatorial, Pareto efficient and strategy-proof social choice rules. Next, we characterize the maximal domains which allow for Maskin
monotonic, non-dictatorial and Pareto-optimal social choice rules