291 research outputs found
Secure data aggregation in wireless sensor networks: A survey
Data aggregation is a widely used technique in wireless sensor networks. The security issues, data confidentiality and integrity, in data aggregation become vital when the sensor network is deployed in a hostile environment. There has been many related work proposed to address these security issues. In this paper we survey these work and classify them into two cases: hop-by-hop encrypted data aggregation and end-to-end encrypted data aggregation. We also propose two general frameworks for the two cases respectively. The framework for end-to-end encrypted data aggregation has higher computation cost on the sensor nodes, but achieves stronger security, in comparison with the framework for hop-by-hop encrypted data aggregation.Yingpeng Sang, Hong Shen, Yasushi Inoguchi, Yasuo Tan, Naixue Xion
Discrete Integrable Systems and Hodograph Transformations Arising from Motions of Discrete Plane Curves
We consider integrable discretizations of some soliton equations associated
with the motions of plane curves: the Wadati-Konno-Ichikawa elastic beam
equation, the complex Dym equation, and the short pulse equation. They are
related to the modified KdV or the sine-Gordon equations by the hodograph
transformations. Based on the observation that the hodograph transformations
are regarded as the Euler-Lagrange transformations of the curve motions, we
construct the discrete analogues of the hodograph transformations, which yield
integrable discretizations of those soliton equations.Comment: 19 page
Explicit prognostic disclosure to Asian women with breast cancer: A randomized scripted video-vignette study
Health and self-regulatio
Endothelial Cell and Platelet Bioenergetics: Effect of Glucose and Nutrient Composition
It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We then examined oxygen consumption and acidification rates using recently available technology in the form of an extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not basal or ATP related oxygen consumption. Labeled glucose oxidation to CO2 increased, but only marginally after high glucose exposure while oleate oxidation to CO2 decreased. Overnight exposure to linolenic acid, but not oleic or linoleic acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells, exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in endothelial cells or platelets
Mechanism of Oxidative DNA Damage in Diabetes : Tuberin Inactivation and Downregulation of DNA Repair Enzyme 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine-DNA Glycosylase
OBJECTIVE—To investigate potential mechanisms of oxidative DNA damage in a rat model of type 1 diabetes and in murine proximal tubular epithelial cells and primary culture of rat proximal tubular epithelial cells
Improvements in vascular health by a low-fat diet, but not a high-fat diet, are mediated by changes in adipocyte biology
<p>Abstract</p> <p>Background</p> <p>Low-fat (LF) and high-fat (HF) weight loss diets improve brachial artery flow-mediated dilation (FMD) in obese individuals, although results are conflicting. Moreover, the role that adipose tissue plays in mediating these diet-related effects are unknown.</p> <p>Objective</p> <p>This study examined how modulations in FMD by HF and LF diets relate to changes in adipocyte parameters.</p> <p>Design</p> <p>Obese subjects (n = 17) were randomized to a HF diet (60% kcal as fat) or a LF diet (25% kcal as fat) for 6 weeks. Both groups were restricted by 25% of energy needs.</p> <p>Results</p> <p>Body weight decreased (<it>P <</it>0.05) in both groups (HF: -6.6 ± 0.5 kg, LF: -4.7 ± 0.6 kg). Fat mass and waist circumference were reduced (<it>P <</it>0.05) in the LF group only (-4.4 ± 0.3 kg; -3.6 ± 0.8 cm, respectively). FMD improved (<it>P <</it>0.05) in the LF group (7.4 ± 0.8% to 9.8 ± 0.8; 32% increase) and was impaired in the HF group (8.5 ± 0.6% to 6.9 ± 0.7; 19% reduction). Increases in plasma adiponectin (<it>P <</it>0.05, 16 ± 5%), and decreases in resistin (<it>P <</it>0.05, -26 ± 11%), were shown by the LF diet only. Greater decreases in leptin were observed with LF (-48 ± 9%) versus HF (-28 ± 12%) (<it>P <</it>0.05, diet × time). Increased FMD by the LF diet was associated with increased adiponectin, and decreased fat mass, waist circumference, leptin, and resistin.</p> <p>Conclusion</p> <p>Beneficial modulations in vascular health by LF diets may be mediated by improvements in adipocyte parameters.</p
C-Peptide Increases Na,K-ATPase Expression via PKC- and MAP Kinase-Dependent Activation of Transcription Factor ZEB in Human Renal Tubular Cells
Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC) in control and hyperglycemic conditions.HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium ((86)Rb(+)) uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM). DNA binding activity was determined by electrical mobility shift assay (EMSA). Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α(1)-subunit protein expression, accompanied with increase in (86)Rb(+) uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α(1)-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6), concomitant with Na,K-ATPase α(1)-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α(1)-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing.Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription factor that has not been previously implicated in C-peptide-mediated signaling. Importantly, only physiological concentrations of C-peptide elicit this effect
- …