509 research outputs found

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Anomalous k-dependent spin splitting in wurtzite AlxGa1-xN/GaN heterostructures

    Full text link
    We have confirmed the k-dependent spin splitting in wurtzite AlxGa1-xN/GaN heterostructures. Anomalous beating pattern in Shubnikov-de Haas measurements arises from the interference of Rashba and Dresselhaus spin-orbit interactions. The dominant mechanism for the k-dependent spin splitting at high values of k is attributed to Dresselhaus term which is enhanced by the Delta C1-Delta C3 coupling of wurtzite band folding effect

    Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis

    Get PDF
    To understand the hemodynamics of hepatocellular carcinoma (HCC) is important for the precise imaging diagnosis and treatment, because there is an intense correlation between their hemodynamics and pathophysiology. Angiogenesis such as sinusoidal capillarization and unpaired arteries shows gradual increase during multi-step hepatocarcinogenesis from high-grade dysplastic nodule to classic hypervascular HCC. In accordance with this angiogenesis, the intranodular portal supply is decreased, whereas the intranodular arterial supply is first decreased during the early stage of hepatocarcinogenesis and then increased in parallel with increasing grade of malignancy of the nodules. On the other hand, the main drainage vessels of hepatocellular nodules change from hepatic veins to hepatic sinusoids and then to portal veins during multi-step hepatocarcinogenesis, mainly due to disappearance of the hepatic veins from the nodules. Therefore, in early HCC, no perinodular corona enhancement is seen on portal to equilibrium phase CT, but it is definite in hypervascular classical HCC. Corona enhancement is thicker in encapsulated HCC and thin in HCC without pseudocapsule. To understand these hemodynamic changes during multi-step hepatocarcinogenesis is important, especially for early diagnosis and treatment of HCCs

    Bactericidal Action of Photogenerated Singlet Oxygen from Photosensitizers Used in Plaque Disclosing Agents

    Get PDF
    Photodynamic therapy (PDT) has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen., a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action.It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT

    Determining the role of external beam radiotherapy in unresectable intrahepatic cholangiocarcinoma: a retrospective analysis of 84 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intrahepatic cholangiocarcinoma (ICC) is the second most common type of primary liver cancer. Only few studies have focused on palliative radiotherapy used for patients who weren't suitable for resection by surgery. This study was conducted to investigate the effect of external beam radiotherapy (EBRT) for patients with unresectable ICC.</p> <p>Methods</p> <p>We identified 84 patients with ICC from December 1998 through December 2008 for retrospective analysis. Thirty-five of 84 patients received EBRT therapy five times a week (median dose, 50 Gy; dose range, 30-60 Gy, in fractions of 1.8-2.0 Gy daily; EBRT group); the remaining 49 patients comprised the non-EBRT group. Tumor response, jaundice relief, and survival rates were compared by Kaplan-Meier analysis. Patient records were reviewed and compared using Cox proportional hazard analysis to determine factors that affect survival time in ICC.</p> <p>Results</p> <p>After EBRT, complete response (CR) and partial response (PR) of primary tumors were observed in 8.6% and 28.5% of patients, respectively, and CR and PR of lymph node metastases were observed in 20% and 40% of patients. In 19 patients with jaundice, complete and partial relief was observed in 36.8% and 31.6% of patients, respectively. Median survival times were 5.1 months for the non-EBRT group and 9.5 months for the EBRT group (<it>P </it>= 0.003). One-and two-year survival rates for EBRT versus non-EBRT group were 38.5% versus 16.4%, and 9.6% versus 4.9%, respectively. Multivariate analysis revealed that clinical symptoms, larger tumor size, no EBRT, multiple nodules and synchronous lymph node metastases were associated with poorer prognosis.</p> <p>Conclusions</p> <p>EBRT as palliative care appears to improve prognosis and relieve the symptom of jaundice in patients with unresectable ICC.</p

    Low Lipoprotein(a) Concentration Is Associated with Cancer and All-Cause Deaths: A Population-Based Cohort Study (The JMS Cohort Study)

    Get PDF
    Background: Experimental studies support the anti-neoplastic effect of apo(a), but several clinical studies have reported contradictory results. The purpose of this study was to determine whether a low lipoprotein(a) [Lp(a)] concentration is related to mortality from major causes of death, especially cancer. Methods The subjects were 10,413 participants (4,005 men and 6,408 women) from a multi-center population-based cohort study in Japan (The Jichi Medical School cohort study). The average age at registration was 55.0 years, and the median observation period was 4,559 days. As the estimated hazard ratio was high for both the low and very high Lp(a) levels, we defined two Lp(a) groups: a low Lp(a) group [Lp(a)<80 mg/L] and an intermediate-to-high Lp(a) group [Lp(a)≥80]. Participants who died from malignant neoplasms (n = 316), cardiovascular disease (202), or other causes (312) during the observation period were examined. Results: Cumulative incidence plots showed higher cumulative death rates for the low Lp(a) group than for the intermediate-to-high Lp(a) group for all-cause, cancer, and miscellaneous-cause deaths (p<0.001, p = 0.03, and p = 0.03, respectively). Cox proportional hazards analyses with the sex and age of the participants, body mass index, and smoking and drinking histories as covariates showed that a low Lp(a) level was a significant risk for all-cause, cancer, and miscellaneous-cause deaths (p<0.001, p = 0.003, and p = 0.01, respectively). The hazard ratio (95% CI) [1.48, 1.15–1.92] of a low Lp(a) level for cancer deaths was almost the same as that for a male sex (1.46, 1.00–2.13). Conclusions: This is the first report to describe the association between a low Lp(a) level and all-cause or cancer death, supporting the anti-neoplastic effect of Lp(a). Further epidemiological studies are needed to confirm the present results

    Cdc48 and Cofactors Npl4-Ufd1 Are Important for G1 Progression during Heat Stress by Maintaining Cell Wall Integrity in Saccharomyces cerevisiae

    Get PDF
    The ubiquitin-selective chaperone Cdc48, a member of the AAA (ATPase Associated with various cellular Activities) ATPase superfamily, is involved in many processes, including endoplasmic reticulum-associated degradation (ERAD), ubiquitin- and proteasome-mediated protein degradation, and mitosis. Although Cdc48 was originally isolated as a cell cycle mutant in the budding yeast Saccharomyces cerevisiae, its cell cycle functions have not been well appreciated. We found that temperature-sensitive cdc48-3 mutant is largely arrested at mitosis at 37°C, whereas the mutant is also delayed in G1 progression at 38.5°C. Reporter assays show that the promoter activity of G1 cyclin CLN1, but not CLN2, is reduced in cdc48-3 at 38.5°C. The cofactor npl4-1 and ufd1-2 mutants also exhibit G1 delay and reduced CLN1 promoter activity at 38.5°C, suggesting that Npl4-Ufd1 complex mediates the function of Cdc48 at G1. The G1 delay of cdc48-3 at 38.5°C is a consequence of cell wall defect that over-activates Mpk1, a MAPK family member important for cell wall integrity in response to stress conditions including heat shock. cdc48-3 is hypersensitive to cell wall perturbing agents and is synthetic-sick with mutations in the cell wall integrity signaling pathway. Our results suggest that the cell wall defect in cdc48-3 is exacerbated by heat shock, which sustains Mpk1 activity to block G1 progression. Thus, Cdc48-Npl4-Ufd1 is important for the maintenance of cell wall integrity in order for normal cell growth and division
    corecore