940 research outputs found
Energy hole mitigation through cooperative transmission in wireless sensor networks
The energy balancing capability of cooperative communication is utilized to solve the energy hole problem in wireless sensor networks. We first propose a cooperative transmission strategy, where intermediate nodes participate in two cooperative multi-input single-output (MISO) transmissions with the node at the previous hop and a selected node at the next hop, respectively. Then, we study the optimization problems for power allocation of the cooperative transmission strategy by examining two different approaches: network lifetime maximization (NLM) and energy consumption minimization (ECM). For NLM, the numerical optimal solution is derived and a searching algorithm for suboptimal solution is provided when the optimal solution does not exist. For ECM, a closed-form solution is obtained. Numerical and simulation results show that both the approaches have much longer network lifetime than SISO transmission strategies and other cooperative communication schemes. Moreover, NLM which features energy balancing outperforms ECM which focuses on energy efficiency, in the network lifetime sense
Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children
Background: Major gaps in our understanding of Plasmodium vivax biology and the acquisition of immunity to this parasite hinder vaccine development. P. vivax merozoites exclusively invade reticulocytes, making parasite proteins that mediate reticulocyte binding and/or invasion potential key vaccine or drug targets. While protein interactions that mediate invasion are still poorly understood, the P. vivax Reticulocyte-Binding Protein family (PvRBP) is thought to be involved in P. vivax restricted host-cell selectivity. Methodology/Principal findings: We assessed the binding specificity of five members of the PvRBP family (PvRBP1a, PvRBP1b, PvRBP2a, PvRBP2b, PvRBP2-P2 and a non-binding fragment of PvRBP2c) to normocytes or reticulocytes. PvRBP2b was identified as the only reticulocyte-specific binder (P<0.001), whereas the others preferentially bound to normocytes (PvRBP1a/b P≤0.034), or showed comparable binding to both (PvRBP2a/2-P2, P = 0.38). Furthermore, we measured levels of total and IgG subclasses 1, 2, 3 and 4 to the six PvRBPs in a cohort of young Papua New Guinean children, and assessed their relationship with prospective risk of P. vivax malaria. Children had substantial, highly correlated (rho = 0.49–0.82, P<0.001) antibody levels to all six PvRBPs, with dominant IgG1 and IgG3 subclasses. Both total IgG (Incidence Rate Ratio [IRR] 0.63–0.73, P = 0.008–0.041) and IgG1 (IRR 0.56–0.69, P = 0.001–0.035) to PvRBP2b and PvRBP1a were strongly associated with reduced risk of vivax-malaria, independently of age and exposure. Conclusion/Significance: These results demonstrate a diversity of erythrocyte-binding phenotypes of PvRBPs, indicating binding to both reticulocyte-specific and normocyte-specific ligands. Our findings provide further insights into the naturally acquired immunity to P. vivax and highlight the importance of PvRBP proteins as targets of naturally acquired humoral immunity. In-depth studies of the role of PvRBPs in P. vivax invasion and functional validation of the role of anti-PvRBP antibodies in clinical immunity against P. vivax are now required to confirm the potential of the reticulocyte-binding PvRBP2b and PvRBP1a as vaccine candidate antigens
Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma
Abstract
Background
The mechanisms by which viruses cause asthma exacerbations are not precisely known. Previously, we showed that, in ovalbumin (OVA)-sensitized and -challenged mice with allergic airway inflammation, rhinovirus (RV) infection increases type 2 cytokine production from alternatively-activated (M2) airway macrophages, enhancing eosinophilic inflammation and airways hyperresponsiveness. In this paper, we tested the hypothesis that IL-4 signaling determines the state of macrophage activation and pattern of RV-induced exacerbation in mice with allergic airways disease.
Methods
Eight week-old wild type or IL-4 receptor knockout (IL-4R KO) mice were sensitized and challenged with OVA and inoculated with RV1B or sham HeLa cell lysate.
Results
In contrast to OVA-treated wild-type mice with both neutrophilic and eosinophilic airway inflammation, OVA-treated IL-4R KO mice showed increased neutrophilic inflammation with few eosinophils in the airways. Like wild-type mice, IL-4R KO mice showed OVA-induced airway hyperreactivity which was further exacerbated by RV. There was a shift in lung cytokines from a type 2-predominant response to a type 1 response, including production of IL-12p40 and TNF-α. IL-17A was also increased. RV infection of OVA-treated IL-4R KO mice further increased neutrophilic inflammation. Bronchoalveolar macrophages showed an M1 polarization pattern and ex vivo RV infection increased macrophage production of TNF-α, IFN-γ and IL-12p40. Finally, lung cells from OVA-treated IL-4R KO mice showed reduced CD206+ CD301+ M2 macrophages, decreased IL-13 and increased TNF-α and IL-17A production by F4/80+, CD11b+ macrophages.
Conclusions
OVA-treated IL-4R KO mice show neutrophilic airway inflammation constituting a model of allergic, type 1 cytokine-driven neutrophilic asthma. In the absence of IL-4/IL-13 signaling, RV infection of OVA-treated mice increased type 1 cytokine and IL-17A production from conventionally-activated macrophages, augmenting neutrophilic rather than eosinophilic inflammation. In mice with allergic airways inflammation, IL-4R signaling determines macrophage activation state and the response to subsequent RV infection.http://deepblue.lib.umich.edu/bitstream/2027.42/109511/1/12931_2014_Article_1503.pd
Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma
Abstract
Background
The mechanisms by which viruses cause asthma exacerbations are not precisely known. Previously, we showed that, in ovalbumin (OVA)-sensitized and -challenged mice with allergic airway inflammation, rhinovirus (RV) infection increases type 2 cytokine production from alternatively-activated (M2) airway macrophages, enhancing eosinophilic inflammation and airways hyperresponsiveness. In this paper, we tested the hypothesis that IL-4 signaling determines the state of macrophage activation and pattern of RV-induced exacerbation in mice with allergic airways disease.
Methods
Eight week-old wild type or IL-4 receptor knockout (IL-4R KO) mice were sensitized and challenged with OVA and inoculated with RV1B or sham HeLa cell lysate.
Results
In contrast to OVA-treated wild-type mice with both neutrophilic and eosinophilic airway inflammation, OVA-treated IL-4R KO mice showed increased neutrophilic inflammation with few eosinophils in the airways. Like wild-type mice, IL-4R KO mice showed OVA-induced airway hyperreactivity which was further exacerbated by RV. There was a shift in lung cytokines from a type 2-predominant response to a type 1 response, including production of IL-12p40 and TNF-α. IL-17A was also increased. RV infection of OVA-treated IL-4R KO mice further increased neutrophilic inflammation. Bronchoalveolar macrophages showed an M1 polarization pattern and ex vivo RV infection increased macrophage production of TNF-α, IFN-γ and IL-12p40. Finally, lung cells from OVA-treated IL-4R KO mice showed reduced CD206+ CD301+ M2 macrophages, decreased IL-13 and increased TNF-α and IL-17A production by F4/80+, CD11b+ macrophages.
Conclusions
OVA-treated IL-4R KO mice show neutrophilic airway inflammation constituting a model of allergic, type 1 cytokine-driven neutrophilic asthma. In the absence of IL-4/IL-13 signaling, RV infection of OVA-treated mice increased type 1 cytokine and IL-17A production from conventionally-activated macrophages, augmenting neutrophilic rather than eosinophilic inflammation. In mice with allergic airways inflammation, IL-4R signaling determines macrophage activation state and the response to subsequent RV infection.http://deepblue.lib.umich.edu/bitstream/2027.42/134573/1/12931_2014_Article_1503.pd
Estimating Mass of Sigma-Meson and Study on Application of the Linear Sigma-Model
Whether the () exists as a real particle is a
long-standing problem in both particle physics and nuclear physics. In this
work, we analyze the deuteron binding energy in the linear model and
by fitting the data, we are able to determine the range of and
also investigate applicability of the linear model for the interaction
between hadrons in the energy region of MeV's. Our result shows that the best
fit to the data of the deuteron binding energy and other experimental data
about deuteron advocates a narrow range for the meson mass as MeV and the concrete values depend on the input parameters
such as the couplings. Inversely fitting the experimental data, our results set
constraints on the couplings. The other relevant phenomenological parameters in
the model are simultaneously obtained.Comment: 12 page
Trace the Accretion Geometry of H 1743--322 with Type C Quasi-periodic Oscillations in Multiple Outbursts
We present a systematic analysis of type C quasi-periodic oscillation (QPO)
observations of H 1743--322 throughout the Rossi X-ray Timing Explorer (RXTE)
era. We find that, while different outbursts have significant flux differences,
they show consistent positive correlations between the QPO fractional
root-mean-square (rms) amplitude and non-thermal fraction of the emission,
which indicate an independence of the intrinsic QPO rms on individual outburst
brightness in H 1743--322. However, the dependence of the QPO rms on frequency
is different between the outburst rise and decay phases, where QPO fractional
rms of the decay phase is significantly lower than that of the rise phase at
low frequencies. The spectral analysis also reveals different ranges of coronal
temperature between the two outburst stages. A semi-quantitative analysis shows
that the Lense-Thirring precession model could be responsible for the QPO rms
differences, requiring a variable coronal geometric shape. However, the
variable-Comptonization model could also account for the findings. The fact
that the rms differences and the hysteresis traces in the hardness-intensity
diagram (HID) accompany each other indicates a connection between the two
phenomena. By correlating the findings with QPO phase lags and the
quasi-simultaneous radio flux previously published, we propose there could be
corona-jet transitions in H 1743--322 similar to those that have been recently
reported in GRS 1915+105.Comment: 21 pages, 12 figure
Identification of Enriched Driver Gene Alterations in Subgroups of Non-Small Cell Lung Cancer Patients Based on Histology and Smoking Status
BACKGROUND: Appropriate patient selection is needed for targeted therapies that are efficacious only in patients with specific genetic alterations. We aimed to define subgroups of patients with candidate driver genes in patients with non-small cell lung cancer. METHODS: Patients with primary lung cancer who underwent clinical genetic tests at Guangdong General Hospital were enrolled. Driver genes were detected by sequencing, high-resolution melt analysis, qPCR, or multiple PCR and RACE methods. RESULTS: 524 patients were enrolled in this study, and the differences in driver gene alterations among subgroups were analyzed based on histology and smoking status. In a subgroup of non-smokers with adenocarcinoma, EGFR was the most frequently altered gene, with a mutation rate of 49.8%, followed by EML4-ALK (9.3%), PTEN (9.1%), PIK3CA (5.2%), c-Met (4.8%), KRAS (4.5%), STK11 (2.7%), and BRAF (1.9%). The three most frequently altered genes in a subgroup of smokers with adenocarcinoma were EGFR (22.0%), STK11 (19.0%), and KRAS (12.0%). We only found EGFR (8.0%), c-Met (2.8%), and PIK3CA (2.6%) alterations in the non-smoker with squamous cell carcinoma (SCC) subgroup. PTEN (16.1%), STK11 (8.3%), and PIK3CA (7.2%) were the three most frequently enriched genes in smokers with SCC. DDR2 and FGFR2 only presented in smokers with SCC (4.4% and 2.2%, respectively). Among these four subgroups, the differences in EGFR, KRAS, and PTEN mutations were statistically significant. CONCLUSION: The distinct features of driver gene alterations in different subgroups based on histology and smoking status were helpful in defining patients for future clinical trials that target these genes. This study also suggests that we may consider patients with infrequent alterations of driver genes as having rare or orphan diseases that should be managed with special molecularly targeted therapies
Diagnosis, treatment and follow-up of 25 patients with melamine-induced kidney stones complicated by acute obstructive renal failure in Beijing Children’s Hospital
A total of 25 Chinese patients aged 6 to 36 months hospitalised at Beijing Children’s Hospital due to melamine-induced kidney stones complicated by acute obstructive renal failure in 2008 were included in a study in order to diagnose and treat these special cases more effectively. Feeding history, clinical presentation, ultrasound findings, treatments and effects were summarised. Twelve to seventeen months follow-up was reported also. Ultrasound examination showed that calculi were located at the kidney and ureters. Stones were composed of both uric acid and melamine in a molar ratio of 1.2:1 to 2.1:1. Treatments providing liquid plus alkalisation of urine proved to be effective in helping the patients pass the stones. Surgical intervention was needed in severe cases. Renal function returned to normal in all 25 patients after various durations of therapy. Sixty-eight percent of the patients expelled all of the calculi within 3 months, 90% in 6 months and 95% in 9 months, without sequelae till now. Melamine-contaminated milk formula can cause kidney stones in infants, which should be diagnosed by feeding history, clinical symptoms and ultrasound examination. Composition of the stones was not only of melamine but also uric acid. Providing liquid orally or intravenously plus alkalisation of urine proved to promote the removal of the stones. Follow-up of 12 to 17 months after discharge showed no sequelae
MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study
<p>Abstract</p> <p>Background</p> <p>The interactions of multiple single nucleotide polymorphisms (SNPs) are highly hypothesized to affect an individual's susceptibility to complex diseases. Although many works have been done to identify and quantify the importance of multi-SNP interactions, few of them could handle the genome wide data due to the combinatorial explosive search space and the difficulty to statistically evaluate the high-order interactions given limited samples.</p> <p>Results</p> <p>Three comparative experiments are designed to evaluate the performance of MegaSNPHunter. The first experiment uses synthetic data generated on the basis of epistasis models. The second one uses a genome wide study on Parkinson disease (data acquired by using Illumina HumanHap300 SNP chips). The third one chooses the rheumatoid arthritis study from Wellcome Trust Case Control Consortium (WTCCC) using Affymetrix GeneChip 500K Mapping Array Set. MegaSNPHunter outperforms the best solution in this area and reports many potential interactions for the two real studies.</p> <p>Conclusion</p> <p>The experimental results on both synthetic data and two real data sets demonstrate that our proposed approach outperforms the best solution that is currently available in handling large-scale SNP data both in terms of speed and in terms of detection of potential interactions that were not identified before. To our knowledge, MegaSNPHunter is the first approach that is capable of identifying the disease-associated SNP interactions from WTCCC studies and is promising for practical disease prognosis.</p
- …