924 research outputs found

    Magnetism and domain formation in SU(3)-symmetric multi-species Fermi mixtures

    Get PDF
    We study the phase diagram of an SU(3)-symmetric mixture of three-component ultracold fermions with attractive interactions in an optical lattice, including the additional effect on the mixture of an effective three-body constraint induced by three-body losses. We address the properties of the system in D2D \geq 2 by using dynamical mean-field theory and variational Monte Carlo techniques. The phase diagram of the model shows a strong interplay between magnetism and superfluidity. In the absence of the three-body constraint (no losses), the system undergoes a phase transition from a color superfluid phase to a trionic phase, which shows additional particle density modulations at half-filling. Away from the particle-hole symmetric point the color superfluid phase is always spontaneously magnetized, leading to the formation of different color superfluid domains in systems where the total number of particles of each species is conserved. This can be seen as the SU(3) symmetric realization of a more general tendency to phase-separation in three-component Fermi mixtures. The three-body constraint strongly disfavors the trionic phase, stabilizing a (fully magnetized) color superfluid also at strong coupling. With increasing temperature we observe a transition to a non-magnetized SU(3) Fermi liquid phase.Comment: 36 pages, 17 figures; Corrected typo

    Critical Level Statistics in Two-dimensional Disordered Electron Systems

    Full text link
    The level statistics in the two dimensional disordered electron systems in magnetic fields (unitary ensemble) or in the presence of strong spin-orbit scattering (symplectic ensemble) are investigated at the Anderson transition points. The level spacing distribution functions P(s)P(s)'s are found to be independent of the system size or of the type of the potential distribution, suggesting the universality. They behave as s2s^2 in the small ss region in the former case, while s4s^4 rise is seen in the latter.Comment: LaTeX, to be published in J. Phys. Soc. Jpn. (Letter) Nov., Figures will be sent on reques

    Interference in interacting quantum dots with spin

    Full text link
    We study spectral and transport properties of interacting quantum dots with spin. Two particular model systems are investigated: Lateral multilevel and two parallel quantum dots. In both cases different paths through the system can give rise to interference. We demonstrate that this strengthens the multilevel Kondo effect for which a simple two-stage mechanism is proposed. In parallel dots we show under which conditions the peak of an interference-induced orbital Kondo effect can be split.Comment: 8 pages, 8 figure

    Relation between Energy Level Statistics and Phase Transition and its Application to the Anderson Model

    Full text link
    A general method to describe a second-order phase transition is discussed. It starts from the energy level statistics and uses of finite-size scaling. It is applied to the metal-insulator transition (MIT) in the Anderson model of localization, evaluating the cumulative level-spacing distribution as well as the Dyson-Metha statistics. The critical disorder Wc=16.5W_{c}=16.5 and the critical exponent ν=1.34\nu=1.34 are computed.Comment: 9 pages, Latex, 6 PostScript figures in uuencoded compressed tar file are appende

    Singlet-Triplet Transition in lateral Quantum Dots: A Numerical Renormalization Group Study

    Full text link
    We discuss transport through a lateral quantum dot in the vicinity of a singlet-triplet spin transition in its ground state. Extracting the scattering phase shifts from the numerical renormalization group spectra, we determine the linear conductance at zero temperature as a function of a Zeeman field and the splitting of the singlet and triplet states. We find reduced low-energy transport, and a non-monotonic magnetic field dependence both in the singlet and the triplet regime. For a generic set of dot parameters and no Zeeman splitting, the singlet-triplet transition may be identified with the conductance maximum. The conductance is least sensitive to the magnetic field in the region of the transition, where it decreases upon application of a magnetic field. Our results are in good agreement with recent experimental data.Comment: 9 pages Revtex, 10 eps figure

    Spectral Properties of Three Dimensional Layered Quantum Hall Systems

    Full text link
    We investigate the spectral statistics of a network model for a three dimensional layered quantum Hall system numerically. The scaling of the quantity J0=1/2J_0={1/2} is used to determine the critical exponent ν\nu for several interlayer coupling strengths. Furthermore, we determine the level spacing distribution P(s)P(s) as well as the spectral compressibility χ\chi at criticality. We show that the tail of P(s)P(s) decays as exp(κs)\exp(-\kappa s) with κ=1/(2χ)\kappa=1/(2\chi) and also numerically verify the equation χ=(dD2)/(2d)\chi=(d-D_2)/(2d), where D2D_2 is the correlation dimension and d=3d=3 the spatial dimension.Comment: 4 pages, 5 figures submitted to J. Phys. Soc. Jp

    Kondo Correlations and the Fano Effect in Closed AB-Interferometers

    Full text link
    We study the Fano-Kondo effect in a closed Aharonov-Bohm (AB) interferometer which contains a single-level quantum dot and predict a frequency doubling of the AB oscillations as a signature of Kondo-correlated states. Using Keldysh formalism, Friedel sum rule and Numerical Renormalization Group, we calculate the exact zero-temperature linear conductance GG as a function of AB phase ϕ\phi and level position ϵ\epsilon. In the unitary limit, G(ϕ)G(\phi) reaches its maximum 2e2/h2e^2/h at ϕ=π/2\phi=\pi/2. We find a Fano-suppressed Kondo plateau for G(ϵ)G(\epsilon) similar to recent experiments.Comment: 4 pages, 4 eps figure
    corecore