103 research outputs found

    Hospital preparedness for foreign patients : A postal survey of 97 public hospitals in Japan

    Full text link
    ē ”ē©¶å ±

    Mechanisms of organelle division and inheritance and their implications regarding the origin of eukaryotic cells

    Get PDF
    Mitochondria and plastids have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. Organellar DNAs are not naked in vivo but are associated with basic proteins to form DNA-protein complexes (called organelle nuclei). The concept of organelle nuclei provides a new approach to explain the origin, division, and inheritance of organelles. Organelles divide using organelle division rings (machineries) after organelle-nuclear division. Organelle division machineries are a chimera of the FtsZ (filamentous temperature sensitive Z) ring of bacterial origin and the eukaryotic mechanochemical dynamin ring. Thus, organelle division machineries contain a key to solve the origin of organelles (eukaryotes). The maternal inheritance of organelles developed during sexual reproduction and it is also probably intimately related to the origin of organelles. The aims of this review are to describe the strategies used to reveal the dynamics of organelle division machineries, and the significance of the division machineries and maternal inheritance in the origin and evolution of eukaryotes

    Contrasting patterns of the 5S and 45S rDNA evolutions in the Byblis liniflora complex (Byblidaceae)

    Get PDF
    To clarify the evolutionary dynamics of ribosomal RNA genes (rDNAs) in the Byblis liniflora complex (Byblidaceae), we investigated the 5S and 45S rDNA genes through (1) chromosomal physical mapping by fluorescence in situ hybridization (FISH) and (2) phylogenetic analyses using the nontranscribed spacer of 5S rDNA (5S-NTS) and the internal transcribed spacer of 45S rDNA (ITS). In addition, we performed phylogenetic analyses based on rbcL and trnK intron. The complex was divided into 2 clades: B. aquaticaā€“B. filifolia and B. guehoiā€“B. linifloraā€“B. rorida. Although members of the complex had conservative symmetric karyotypes, they were clearly differentiated on chromosomal rDNA distribution patterns. The sequence data indicated that ITS was almost homogeneous in all taxa in which two or four 45S rDNA arrays were frequently found at distal regions of chromosomes in the somatic karyotype. ITS homogenization could have been prompted by relatively distal 45S rDNA positions. In contrast, 2ā€“12 5S rDNA arrays were mapped onto proximal/interstitial regions of chromosomes, and some paralogous 5S-NTS were found in the genomes harboring 4 or more arrays. 5S-NTS sequence type-specific FISH analysis showed sequence heterogeneity within and between some 5S rDNA arrays. Interlocus homogenization may have been hampered by their proximal location on chromosomes. Chromosomal location may have affected the contrasting evolutionary dynamics of rDNAs in the B. liniflora complex

    Do Femtonewton Forces Affect Genetic Function? A Review

    Full text link
    Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a ā€˜substrate tension switchā€™ could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo . We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41816/1/10867_2005_Article_9002.pd

    Shape Limit in Triangular Spiral Tilings

    No full text
    Phyllotaxis is the study of arrangements of leafs and florets. The topology of triangular spiral (multiple) tilings with opposed parastichy pairs is intimately related to the phyllotaxis theory and continued fractions. It is shown that, if the divergence angle of the genetic spiral is given as a quadratic irrational and fixed, then the limit set of the shape parameters of triangular tiles, as the parastichy numbers tend to infinity, is a finite set. In particular, the limit is the golden section if the divergence angle is `ultimately golden'

    Protective Effect of Vitamin C against Double-Strand Breaks in Reconstituted Chromatin Visualized by Single-Molecule Observation

    Get PDF
    ABSTRACT Direct attack to genomic DNA by reactive oxygen species causes various types of lesions, including base modifications and strand breaks. The most significant lesion is considered to be an unrepaired double-strand break that can lead to fatal cell damage. We directly observed double-strand breaks of DNA in reconstituted chromatin stained by a fluorescent cyanine dye, YOYO (quinolinium, 1,19-[1,3- propanediylbis[(dimethyliminio)-3,1- propanediyl]]bis[4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]]-, tetraiodide), in solution, where YOYO is known to have the ability to photo-cleave DNAs by generating reactive oxygen species. Reconstituted chromatin was assembled from large circular DNA (106 kbp) with core histone proteins. We also investigated the effect of vitamin C (ascorbic acid) on preventing photo-induced double-strand breaks in a quantitative manner. We found that DNA is protected against double-strand breaks by the addition of ascorbic acid, and this protective effect is dose dependent. The effective kinetic constant of the breakage reaction in the presence of 5 mM ascorbic acid is 20 times lower than that in the absence of ascorbic acid. This protective effect of ascorbic acid in reconstituted chromatin is discussed in relation to the highly compacted polynucleosomal structure. The results highlight the fact that single-molecule observation is a useful tool for studying double-strand breaks in giant DNA and chromatin. INTRODUCTON It is widely accepted that oxidative damage to genomic DNA by reactive oxygen species induces various types of DN
    • ā€¦
    corecore