45 research outputs found
Increase of electronegative-LDL-fraction ratio and IDL-cholesterol in chronic kidney disease patients with hemodialysis treatment
Automated mass spectrometric analysis of urinary and plasma serotonin
Serotonin emerges as crucial neurotransmitter and hormone in a growing number of different physiologic processes. Besides extensive serotonin production previously noted in patients with metastatic carcinoid tumors, serotonin now is implicated in liver cell regeneration and bone formation. The aim was to develop a rapid, sensitive, and highly selective automated on-line solid-phase extraction method coupled to high-performance liquid chromatography–tandem mass spectrometry (XLC-MS/MS) to quantify low serotonin concentrations in matrices such as platelet-poor plasma and urine. Fifty microliters plasma or 2.5 μL urine equivalent were pre-purified by automated on-line solid-phase extraction, using weak cation exchange. Chromatography of serotonin and its deuterated internal standard was performed with hydrophilic interaction chromatography. Mass spectrometric detection was operated in multiple reaction monitoring mode using a quadrupole tandem mass spectrometer with positive electrospray ionization. Serotonin concentrations were determined in platelet-poor plasma of metastatic carcinoid patients (n = 23) and healthy controls (n = 22). Urinary reference intervals were set by analyzing 24-h urine collections of 120 healthy subjects. Total run-time was 6 min. Intra- and inter-assay analytical variation were <10%. Linearity in the 0–7300 μmol/L calibration range was excellent (R2 > 0.99). Quantification limits were 30 and 0.9 nmol/L in urine and plasma, respectively. Platelet-poor serotonin concentrations in metastatic carcinoid patients were significantly higher than in controls. The urinary reference interval was 10–78 μmol/mol creatinine. Serotonin analysis with sensitive and specific XLC-MS/MS overcomes limitations of conventional HPLC. This enables accurate quantification of serotonin for both routine diagnostic procedures and research in serotonin-related disorders
Fasting serum C-peptide levels (>1.6ng/mL) can predict the presence of insulin resistance in Japanese patients with type 2 diabetes
Different associations of body mass index and visceral fat area with metabolic parameters and adipokines in Japanese patients with type 2 diabetes
Hepatitis C virus polyprotein processing: kinetics and mutagenic analysis of serine proteinase-dependent cleavage
Hepatitis C virus (HCV) serine proteinase (Cpro-2) is responsible for the processing of HCV nonstructural (NS) protein processing. To clarify the mechanism of Cpro-2-dependent processing, pulse-chase and mutation analyses were performed by using a transient protein production system in cultured cells. Pulse-chase study revealed the sequential production of HCV-NS proteins. Production of p70(NS3) and p66(NS5B) were rapid. An 89-kDa processing intermediate protein (p89) was observed during the early part of the chase. p89 seemed to be cleaved first into a 31-kDa protein (p31) and a p58/56(NS5A). p31 was further processed into p4(NS4A) and p27(NS4B). Mutation analysis of cleavage sites of NS4A/4B, NS4B/5A, and NS5A/5B revealed that cleavage at each site is essentially independent from cleavage occurring at the other site.</jats:p
