304 research outputs found

    Effects of anisotropy on optimal dense coding

    Full text link
    We study optimal dense coding with thermal entangled states of a two-qubit anisotropic \emph{XXZ} model and a Heisenberg model with Dzyaloshinski-Moriya (DM) interactions. The DM interaction is another kind of anisotropic antisymmetric exchange interaction. The effects of these two kinds of anisotropies on dense coding are studied in detail for both the antiferromagnetic and ferromagnetic cases. For the two models, we give the conditions that the parameters of the models have to satisfy for a valid dense coding. We also found that even though there is entanglement, it is unavailable for our optimal dense coding, which is the same as entanglement teleportation.Comment: Accepted by physica script

    Detecting the inseparability and distillability of continuous variable states in Fock space

    Full text link
    The partial transposition(PT) operation is an effecient tool in detecting the inseparability of a mixed state. We give an explicit formula for the PT operation for the continuous variable states in Fock space. We then give the necessary and sufficient condition for the positivity of Gaussian operators. Based on this, a number of creterions on the inseparability and distillability for the multimode Gaussian states are naturally drawn. We finally give an explicit formula for the state in a subspace of a global Gaussian state. This formula, together with the known results for Gaussian states, gives the criterions for the inseparability and distillability in a subspace of the global Gaussian state.Comment: 8 pages, no figure, some typing errors correcte

    Renormalized Bosonic Interaction of Excitons

    Full text link
    An effective bosonic Hamiltonian of 1s1s excitons with ``spin'' degrees of freedom in two dimension is obtained through a projection procedure, starting from a conventional electron-hole Hamiltonian Heh{\cal H}_{eh}. We first demonstrate that a straightforward transformation of Heh{\cal H}_{eh} into a Hamiltonian of bosonic excitons does not give the two-body interaction between an ``up-spin'' exciton and a ``down-spin'' exciton, which are created by the left- and right-circularly polarized light beams, respectively. We then show that this interaction is generated through a projection procedure onto the subspace spanned by 1s1s excitons, as a renormalization effect coming from higher exciton states. The projection also renormalizes the interaction between 1s1s excitons with the same spins by a large amount. These renormalization effects are crucial for the polarization dependence of the optical responses from semiconductors. The present theory gives the microscopic foundation of the phenomenology that was successfully applied to the analysis of four-wave mixing experiments in GaAs quantum wells strongly coupled to the radiation field in a high-Q micro cavity.Comment: 2 figure

    Gaussian quantum marginal problem

    Full text link
    The quantum marginal problem asks what local spectra are consistent with a given spectrum of a joint state of a composite quantum system. This setting, also referred to as the question of the compatibility of local spectra, has several applications in quantum information theory. Here, we introduce the analogue of this statement for Gaussian states for any number of modes, and solve it in generality, for pure and mixed states, both concerning necessary and sufficient conditions. Formally, our result can be viewed as an analogue of the Sing-Thompson Theorem (respectively Horn's Lemma), characterizing the relationship between main diagonal elements and singular values of a complex matrix: We find necessary and sufficient conditions for vectors (d1, ..., dn) and (c1, ..., cn) to be the symplectic eigenvalues and symplectic main diagonal elements of a strictly positive real matrix, respectively. More physically speaking, this result determines what local temperatures or entropies are consistent with a pure or mixed Gaussian state of several modes. We find that this result implies a solution to the problem of sharing of entanglement in pure Gaussian states and allows for estimating the global entropy of non-Gaussian states based on local measurements. Implications to the actual preparation of multi-mode continuous-variable entangled states are discussed. We compare the findings with the marginal problem for qubits, the solution of which for pure states has a strikingly similar and in fact simple form.Comment: 18 pages, 1 figure, material added, references updated, except from figure identical with version to appear in Commun. Math. Phy

    Security Analysis of an Untrusted Source for Quantum Key Distribution: Passive Approach

    Get PDF
    We present a passive approach to the security analysis of quantum key distribution (QKD) with an untrusted source. A complete proof of its unconditional security is also presented. This scheme has significant advantages in real-life implementations as it does not require fast optical switching or a quantum random number generator. The essential idea is to use a beam splitter to split each input pulse. We show that we can characterize the source using a cross-estimate technique without active routing of each pulse. We have derived analytical expressions for the passive estimation scheme. Moreover, using simulations, we have considered four real-life imperfections: Additional loss introduced by the "plug & play" structure, inefficiency of the intensity monitor, noise of the intensity monitor, and statistical fluctuation introduced by finite data size. Our simulation results show that the passive estimate of an untrusted source remains useful in practice, despite these four imperfections. Also, we have performed preliminary experiments, confirming the utility of our proposal in real-life applications. Our proposal makes it possible to implement the "plug & play" QKD with the security guaranteed, while keeping the implementation practical.Comment: 35 pages, 19 figures. Published Versio

    Alpha-fetoprotein-producing primary lung carcinoma: A case report

    Get PDF
    Alpha-fetoprotein (AFP)-producing lung adenocarcinoma is a rare type of lung cancer, with its characteristics not yet fully clarified. We recently encountered a case of this type of lung cancer. The patient was a 69-year-old man who consulted an internist with the chief complaint of epigastric pain. Chest X-ray and CT revealed a lobulated mass measuring 70 mm in diameter in the right lower lung field and a metastasis in the right hilar lymph nodes. Of the tumor markers, the serum AFP was elevated (4620 ng/ml), and the serum carcinoembryonic antigen and carbohydrate antigen 19-9 were also slightly elevated. Transbronchial lung biopsy revealed the diagnosis of lung cancer. Under thoracoscopic assistance, right lower lobectomy + mediastinal lymph node dissection was carried out. Immunostaining showed the tumor cells to be AFP-positive. The tumor was thus diagnosed as an AFP-producing lung adenocarcinoma. The patient followed an uneventful clinical course after the surgery, with serum AFP decreasing to the normal range by about 2 weeks after the surgery. As of this writing, no sign of tumor recurrence has been noted. This case is presented here with a review of the literature

    Semiconductor-cavity QED in high-Q regimes: Detuning effect

    Full text link
    The non-resonant interaction between the high-density excitons in a quantum well and a single mode cavity field is investigated. An analytical expression for the physical spectrum of the excitons is obtained. The spectral properties of the excitons, which are initially prepared in the number states or the superposed states of the two different number states by the resonant femtosecond pulse pumping experiment, are studied. Numerical study of the physical spectrum is carried out and a discussion of the detuning effect is presented.Comment: 7 pages, 8 figure
    corecore