25 research outputs found

    Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects

    Get PDF
    Maximal physical exertion is accompanied by increased degradation of purine nucleotides in muscles with the products of purine catabolism accumulating in the plasma. Thanks to membrane transporters, these products remain in an equilibrium between the plasma and red blood cells where they may serve as substrates in salvage reactions, contributing to an increase in the concentrations of purine nucleotides. In this study, we measured the concentrations of adenine nucleotides (ATP, ADP, AMP), inosine nucleotides (IMP), guanine nucleotides (GTP, GDP, GMP), and also pyridine nucleotides (NAD, NADP) in red blood cells immediately after standardized physical effort with increasing intensity, and at the 30th min of rest. We also examined the effect of muscular exercise on adenylate (guanylate) energy charge—AEC (GEC), and on the concentration of nucleosides (guanosine, inosine, adenosine) and hypoxanthine. We have shown in this study that a standardized physical exercise with increasing intensity leads to an increase in IMP concentration in red blood cells immediately after the exercise, which with a significant increase in Hyp concentration in the blood suggests that Hyp was included in the IMP pool. Restitution is accompanied by an increase in the ATP/ADP and ADP/AMP ratios, which indicates an increase in the phosphorylation of AMP and ADP to ATP. Physical effort applied in this study did not lead to changes in the concentrations of guanine and pyridine nucleotides in red blood cells

    Sprint training reduces urinary purine loss following intense exercise in humans

    Get PDF
    The influence of sprint training on endogenous urinary purine loss was examined in seven active male subjects (age: 23.1 ± 1.8 years, weight: 76.1 ± 3.1 kg, VO2peak: 56.3 ± 4.0 ml.kg-1.min-1). Each subject performed a 30s sprint performance test (PT), before and after 7 days of sprint training. Training consisted of fifteen 10s sprints on an air-braked cycle ergometer performed twice per day. A rest period of 50s separated each sprint during training. Sprint training resulted in a 20% higher muscle ATP immediately after PT, a lower IMP (57% and 89%, immediately following and after 10 min recovery from PT, respectively), and inosine accumulation (53% and 56%, immediately following and 10 min after the PT, respectively). Sprint training also attenuated the exercise-induced increases in plasma inosine, hypoxanthine (Hx) and uric acid during the first 120 min of recovery and reduced the total urinary excretion of purines (inosine + Hx + uric acid) in the 24 hours recovery following intense exercise. These results show that intermittent sprint training reduces the total urinary purine excretion after a 30s sprint bout

    Effect of training load on simulated team sport match performance

    No full text
    This study examined the effect of training load on running performance and plasma markers of anaerobic metabolism, muscle damage, and inflammation during a simulated team sport match performance. Seven team sport athletes (maximal oxygen uptake, 47.6 ± 4.2 mL·kg–1·min–1) completed a 60-min simulated team sport match before and after either 4 days of HIGH or LOW training loads. Venous blood samples were taken pre-match, immediately post-match, and 2 h post-match for interlukin-6, monocyte chemoattractant protein-1 (MCP-1), creatine kinase (CK), lactate dehydrogenase, C-reactive protein, xanthine oxidase (XO), and hypoxanthine. Following HIGH training load, sprint velocity decreased (p < 0.001) and total distance covered was reduced (HIGH 5495 ± 670 m, LOW 5608 ± 674 m, p = 0.02) was observed during the simulated match protocol compared with the LOW match simulation. Decreased performance capacity was accompanied by a significant increase in serum CK concentration (HIGH 290 ± 62 U·L–1, LOW 199 ± 33 U·L–1, p = 0.005). The HIGH training also resulted in a decreased post-match hypoxanthine and MCP-1 and an increase in XO concentration 2 h post-match. Four days of increased training load reduced running performance during the match simulation and altered the metabolic and inflammatory response to high-intensity intermittent exercise.Katie May Slattery, Lee Kenneth Wallace, David John Bentley, Aaron James Coutt

    The influence of D-ribose ingestion and fitness level on performance and recovery

    No full text
    Abstract Background Skeletal muscle adenosine triphosphate (ATP) levels are severely depleted during and following prolonged high intensity exercise. Recovery from these lower ATP levels can take days, which can affect performance on subsequent days of exercise. Untrained individuals often suffer the stress and consequences of acute, repeated bouts of exercise by not having the ability to perform or recovery sufficiently to exercise on subsequent days. Conversely, trained individuals may be able to recover more quickly due to their enhanced metabolic systems. D-Ribose (DR) has been shown to enhance the recovery in ATP; however, it is not known if recovery and performance can be benefitted with DR ingestion. Therefore, this study was designed to determine what influence DR might have on muscular performance, recovery, and metabolism during and following a multi-day exercise regimen. Methods The study was a double blind, crossover study in 26 healthy subjects compared 10 g/day of DR to 10 g/day of dextrose (DEX, control). All subjects completed 2 days of loading with either DR or DEX, followed by 3 additional days of supplementation and during these 3 days of supplementation, each subject underwent 60 min of high intensity interval exercise in separate daily sessions, which involved cycling (8 min of exercise at 60% and 2 min at 80% VO2max), followed by a 2 min power output (PO) test. Subjects were divided into two groups based on peak VO2 results, lower VO2 (LVO2) and higher peak VO2 (HVO2). Results Mean and peak PO increased significantly from day 1 to day 3 for the DR trial compared to DEX in the LVO2 group. Rate of perceived exertion (RPE) and creatine kinase (CK) were significantly lower for DR than DEX in the LVO2 group. No differences in PO, RPE, heart rate, CK, blood urea nitrogen, or glucose were found between either supplement for the HVO2 group. Conclusion DR supplementation in the lower VO2 max group resulted in maintenance in exercise performance, as well as lower levels of RPE and CK. Unlike no observed benefits with DEX supplementation
    corecore