116,086 research outputs found
Recommended from our members
Lectures on D-branes, gauge theories and Calabi-Yau singularities
These lectures, given at the Chinese Academy of Sciences for the BeiJing/HangZhou International Summer School in Mathematical Physics, are intended to introduce, to the beginning student in string theory and mathematical physics, aspects of the rich and beautiful subject of D-brane gauge theories constructed from local Calabi-Yau spaces. Topics such as orbifolds, toric singularities, del Pezzo surfaces as well as chaotic duality will be covered
Recommended from our members
Chern-Simons: Fano and Calabi-Yau
We present the complete classification of smooth toric Fano threefolds, known to the algebraic geometry literature, and perform some preliminary analyses in the context of brane-tilings and Chern-Simons theory on M2-branes probing Calabi-Yau fourfold singularities. We emphasise that these 18 spaces should be as intensely studied as their well-known counter-parts: the del Pezzo surfaces
Tuning electronic structure of graphene via tailoring structure: theoretical study
Electronic structures of graphene sheet with different defective patterns are
investigated, based on the first principles calculations. We find that
defective patterns can tune the electronic structures of the graphene
significantly. Triangle patterns give rise to strongly localized states near
the Fermi level, and hexagonal patterns open up band gaps in the systems. In
addition, rectangular patterns, which feature networks of graphene nanoribbons
with either zigzag or armchair edges, exhibit semiconducting behaviors, where
the band gap has an evident dependence on the width of the nanoribbons. For the
networks of the graphene nanoribbons, some special channels for electronic
transport are predicted.Comment: 5 figures, 6 page
Design of high-frequency Gm-C wavelet filters
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ECCTD.2009.5274969A high-frequency wavelet filter which employs Gm-C blocks based on leap-frog (LF) multiple-loop feedback (MLF) structure is presented. The proposed method is well suitable for high-quality high-frequency operation since the Gm-C based filter can achieve high frequency, whilst LF MLF configuration has the characteristics of lower magnitude sensitivity and capability of realizing arbitrary rational functions. The Marr wavelet is selected as an example in this paper, and the design for a 100 MHz frequency operation is elaborated. The wavelet filter is simulated using TSMC 1.8 V 0.18 mum CMOS technology. Simulation results indicate that the proposed method is feasible for high frequency operation with relatively low power consumption.Peer reviewe
Recommended from our members
Modular matrix models
Inspired by a formal resemblance of certain q-expansions of modular forms and the master field formalism of matrix models in terms of Cuntz operators, we construct a Hermitian one-matrix model, which we dub the ``modular matrix model.'' Together with an N=1 gauge theory and a special Calabi-Yau geometry, we find a modular matrix model that naturally encodes the Klein elliptic j-invariant, and hence, by Moonshine, the irreducible representations of the Fischer-Griess Monster group
Collaborative signal and information processing for target detection with heterogeneous sensor networks
In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield
- …