3,451 research outputs found
From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality
By means of Dirac procedure, we re-examine Yang's quantized space-time model,
its relation to Snyder's model, the de Sitter special relativity and their
UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a
complete Yang model at both classical and quantum level can be presented and
there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge
The Euler-Lagrange Cohomology and General Volume-Preserving Systems
We briefly introduce the conception on Euler-Lagrange cohomology groups on a
symplectic manifold and systematically present the
general form of volume-preserving equations on the manifold from the
cohomological point of view. It is shown that for every volume-preserving flow
generated by these equations there is an important 2-form that plays the analog
role with the Hamiltonian in the Hamilton mechanics. In addition, the ordinary
canonical equations with Hamiltonian are included as a special case with
the 2-form . It is studied the other volume preserving
systems on . It is also explored the relations between
our approach and Feng-Shang's volume-preserving systems as well as the Nambu
mechanics.Comment: Plain LaTeX, use packages amssymb and amscd, 15 pages, no figure
Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time
Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model
under the Newton-Hooke contraction of the spacetime with respect to the
transformation group, algebra and geometry. It is shown that in Newton-Hooke
space-time, there are inertial-type coordinate systems and inertial-type
observers, which move along straight lines with uniform velocity. And they are
invariant under the Newton-Hooke group. In order to determine uniquely the
Newton-Hooke limit, we propose the Galilei-Hooke's relativity principle as well
as the postulate on Newton-Hooke universal time. All results are readily
extended to the Newton-Hooke model as a contraction of Beltrami-anti-de Sitter
spacetime with negative cosmological constant.Comment: 25 pages, 3 figures; some misprints correcte
Three Kinds of Special Relativity via Inverse Wick Rotation
Since the special relativity can be viewed as the physics in an inverse Wick
rotation of 4-d Euclid space, which is at almost equal footing with the 4-d
Riemann/Lobachevski space, there should be important physics in the inverse
Wick rotation of 4-d Riemann/Lobachevski space. Thus, there are three kinds of
special relativity in de Sitter/Minkowski/anti-de Sitter space at almost equal
footing, respectively. There is an instanton tunnelling scenario in the
Riemann-de Sitter case that may explain why \La be positive and link with the
multiverse.Comment: 3 pages, no figures, to appear in Chin. Phys. Let
Constraining the HI-Halo Mass Relation From Galaxy Clustering
We study the dependence of galaxy clustering on atomic gas mass using a
sample of 16,000 galaxies with redshift in the range of
and HI mass of , drawn from the 70% complete sample
of the Arecibo Legacy Fast ALFA survey. We construct subsamples of galaxies
with above different thresholds, and make volume-limited
clustering measurements in terms of three statistics: the projected two-point
correlation function, the projected cross-correlation function with respect to
a reference sample selected from the Sloan Digital Sky Survey, and the
redshift-space monopole moment. In contrast to previous studies, which found
no/weak HI-mass dependence, we find both the clustering amplitude on scales
above a few Mpc and the bias factors to increase significantly with increasing
HI mass for subsamples with HI mass thresholds above . For HI
mass thresholds below , while the measurements have large
uncertainties caused by the limited survey volume and sample size, the inferred
galaxy bias factors are systematically lower than the minimum halo bias factor
from mass-selected halo samples. The simple halo model, in which galaxy content
is only determined by halo mass, has difficulties in interpreting the
clustering measurements of the HI-selected samples. We extend the simple model
by including the halo formation time as an additional parameter. A model that
puts HI-rich galaxies into halos that formed late can reproduce the clustering
measurements reasonably well. We present the implications of our best-fitting
model on the correlation of HI mass with halo mass and formation time, as well
as the halo occupation distributions and HI mass functions for central and
satellite galaxies. These results are compared with the predictions from
semi-analytic galaxy formation models and hydrodynamic galaxy formation
simulations.Comment: Accepted for publication in ApJ. The 2PCF measurements are available
at http://sdss4.shao.ac.cn/guoh
Snyder's Quantized Space-time and De Sitter Special Relativity
There is a one-to-one correspondence between Snyder's model in de Sitter
space of momenta and the \dS-invariant special relativity. This indicates that
physics at the Planck length and the scale should be
dual to each other and there is in-between gravity of local \dS-invariance
characterized by a dimensionless coupling constant .Comment: 8 page
Identifiyng the emerging roles of nanoparticles in biosensors
This paper profiles R&D on the application of nanoparticles in biosensors and explores potential application development pathways. The analysis uses a dataset of nanotechnology publication records for the time period 2001 through 2008 (part year) extracted from the Science Citation Index. It focuses on emergent research activities in the most recent years. Bibliometric analyses are employed to ascertain R&D trends and research networks for key biosensors. Growth models are fit to forecast the technological trend for nanoparticle-enhanced biosensor research activity. In addition, a combination of quantity (publication) and quality (citation) analysis for nanoparticle-enhanced biosensors helps position the leading countries in this research field. Science overlay mapping shows different emphases of nanoparticle-enhanced biosensor research between the US and China, the leading countries. Recent studies suggest that nano-enhanced biosensors show promise for gains in stability, sensitivity, selectivity, and accuracy - for both direct and indirect detection. This paper demonstrates how bibliometric analyses can help anticipate emerging technology development and application potential.<br
Spectra of Baryons Containing Two Heavy Quarks in Potential Model
In this work, we employ the effective vertices for interaction between
diquarks (scalar or axial-vector) and gluon where the form factors are derived
in terms of the B-S equation, to obtain the potential for baryons including a
light quark and a heavy diquark. The concerned phenomenological parameters are
obtained by fitting data of mesons instead of the heavy quarkonia.
The operator ordering problem in quantum mechanics is discussed. Our numerical
results indicate that the mass splitting between and
is very small and it is consistent with the heavy quark effective
theory (HQET).Comment: 16 page
- …