139,267 research outputs found
A 3D Numerical Method for Studying Vortex Formation Behind a Moving Plate
In this paper, we introduce a three-dimensional numerical method for computing the wake behind a flat plate advancing perpendicular to the flow. Our numerical method is inspired by the panel method of J. Katz and A. Plotkin [J. Katz and A. Plotkin, Low-speed Aerodynamics, 2001] and the 2D vortex blob method of Krasny [R. Krasny, Lectures in Appl. Math., 28 (1991), pp. 385--402]. The accuracy of the method will be demonstrated by comparing the 3D computation at the center section of a very high aspect ratio plate with the corresponding two-dimensional computation. Furthermore, we compare the numerical results obtained by our 3D numerical method with the corresponding experimental results obtained recently by Ringuette [M. J. Ringuette, Ph.D. Thesis, 2004] in the towing tank. Our numerical results are shown to be in excellent agreement with the experimental results up to the so-called formation time
Origin of superconductivity in nominally "undoped" T'-LaYCuO films
We have systematically studied the transport properties of the
LaYCuO(LYCO) films of T'-phase (). In
this nominally "undoped" system, superconductivity was acquired in certain Y
doping range (). Measurements of resistivity, Hall
coefficients in normal states and resistive critical field ()in
superconducting states of the T'-LYCO films show the similar behavior as the
known Ce-doped n-type cuprate superconductors, indicating the intrinsic
electron-doping nature. The charge carriers are induced by oxygen deficiency.
Non-superconducting Y-doped Pr- or Nd-based T'-phase cuprate films were also
investigated for comparison, suggesting the crucial role of the radii of A-site
cations in the origin of superconductivity in the nominally "undoped" cuptates.
Based on a reasonable scenario in the microscopic reduction process, we put
forward a self-consistent interpretation of these experimental observations.Comment: 8 pages, 9 figure
Quantum-Fluctuation-Initiated Coherence in Multi-Octave Raman Optical Frequency Combs
We show experimentally and theoretically that the spectral components of a
multi-octave frequency comb spontaneously created by stimulated Raman
scattering in a hydrogen-filled hollow-core photonic crystal fiber exhibit
strong self coherence and mutual coherence within each 12 ns driving laser
pulse. This coherence arises in spite of the field's initiation being from
quantum zero-point fluctuations, which causes each spectral component to show
large phase and energy fluctuations. This points to the possibility of an
optical frequency comb with nonclassical correlations between all comb lines.Comment: Accepted for publication, Physical Review Letters, 201
Two Higgs Bi-doublet Left-Right Model With Spontaneous P and CP Violation
A left-right symmetric model with two Higgs bi-doublet is shown to be a
consistent model for both spontaneous P and CP violation. The flavor changing
neutral currents can be suppressed by the mechanism of approximate global U(1)
family symmetry. We calculate the constraints from neural meson mass
difference and demonstrate that a right-handed gauge boson
contribution in box-diagrams with mass well below 1 TeV is allowed due to a
cancellation caused by a light charged Higgs boson with a mass range GeV. The contribution to can be suppressed from
appropriate choice of additional CP phases appearing in the right-handed
Cabbibo-Kobayashi-Maskawa matrix. The model is also found to be fully
consistent with mass difference , and the mixing-induced CP
violation quantity , which is usually difficult for the
model with only one Higgs bi-doublet. The new physics beyond the standard model
can be directly searched at the colliders LHC and ILC.Comment: 25 pages, 6 figures, typos corrected, 1 figure added, published
versio
- β¦