73 research outputs found

    Driven flux-line lattices in the presence of weak random columnar disorder: Finite-temperature behavior and dynamical melting of moving Bose glass

    Full text link
    We use 3D numerical simulations to explore the phase diagram of driven flux line lattices in presence of weak random columnar disorder at finite temperature and high driving force. We show that the moving Bose glass phase exists in a large range of temperature, up to its melting into a moving vortex liquid. It is also remarkably stable upon increasing velocity : the dynamical transition to the correlated moving glass expected at a critical velocity is not found at any velocity accessible to our simulations. Furthermore, we show the existence of an effective static tin roof pinning potential in the direction transverse to motion, which originates from both the transverse periodicity of the moving lattice and the localization effect due to correlated disorder. Using a simple model of a single elastic line in such a periodic potential, we obtain a good description of the transverse field penetration at surfaces as a function of thickness in the moving Bose glass phase.Comment: 5 pages, 4 figures, New title and minor changes in text and figures. Accepted for publication in Physical Review

    The elastic depinning transition of vortex lattices in two dimensions

    Full text link
    Large scale numerical simulations are used to study the elastic dynamics of two-dimensional vortex lattices driven on a disordered medium in the case of weak disorder. We investigate the so-called elastic depinning transition by decreasing the driving force from the elastic dynamical regime to the state pinned by the quenched disorder. Similarly to the plastic depinning transition, we find results compatible with a second order phase transition, although both depinning transitions are very different from many viewpoints. We evaluate three critical exponents of the elastic depinning transition. β=0.29±0.03\beta = 0.29 \pm 0.03 is found for the velocity exponent at zero temperature, and from the velocity-temperature curves we extract the critical exponent δ1=0.28±0.05\delta^{-1} = 0.28 \pm 0.05. Furthermore, in contrast with charge-density waves, a finite-size scaling analysis suggests the existence of a unique diverging length at the depinning threshold with an exponent ν=1.04±0.04\nu= 1.04 \pm 0.04, which controls the critical force distribution, the finite-size crossover force distribution and the intrinsic correlation length. Finally, a scaling relation is found between velocity and temperature with the β\beta and δ\delta critical exponents both independent with regard to pinning strength and disorder realizations.Comment: 17 pages, 10 figure

    Critical behavior of plastic depinning of vortex lattices in two dimensions: Molecular dynamics simulations

    Full text link
    Using molecular dynamics simulations, we report a study of the dynamics of two-dimensional vortex lattices driven over a disordered medium. In strong disorder, when topological order is lost, we show that the depinning transition is analogous to a second order critical transition: the velocity-force response at the onset of motion is continuous and characterized by critical exponents. Combining studies at zero and nonzero temperature and using a scaling analysis, two critical expo- nents are evaluated. We find v\sim (F-F_c)^\beta with \beta=1.3\pm0.1 at T=0 and F>F_c, and v\sim T^{1/\delta} with \delta^{-1}=0.75\pm0.1 at F=F_c, where F_c is the critical driving force at which the lattice goes from a pinned state to a sliding one. Both critical exponents and the scaling function are found to exhibit universality with regard to the pinning strength and different disorder realizations. Furthermore, the dynamics is shown to be chaotic in the whole critical region.Comment: 8 pages, 6 figure

    Remote Sensing of Snow in the Solar Spectrum: Experiments in the French Alps.

    Get PDF
    Two experiments were perfonned irliApril and December 1992 in the French Alps using simultaneous relnote sensing and ground truth data. Snow grain site and soot content of samples collected in thefield were measured. The Landsat thematic mapper (TM) sensor was used because it has a good spatial resolution, a middle infrared channel which is sensitive to grain size and a thermal infraredchannel. Firstj the reflectance data were compared with the theoretical results obtained from a bidirectional reflectance model. Then, some remote sehstng-derived snow parameters wbre comparediWith the outpllt ofa snow metamorphism model (CROCUS),viz., lower elevation of the snowcover, lhe surface grl1in size and the surface temperature. A digital elevation model was used to obtain thelocal incidenc:f angles and the elevation of each snow pixel. The pixels were then grouped according to CROCUS classification (range, elevation, slope, and orientation) and the mean snow chart;cheracteristicsfor each class were .compared with the tROCUS results. The lower limit of snow and the surface grain size derived from TM data were compared favourably with the model results. Larger differences werefound for the temperature, because it varies rapidly and is very sensitive to shadowing by the snrrounding mountains and also because its remote measurement is dependent on atmospheric conditions

    Pressure is not a state function for generic active fluids

    Get PDF
    Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal equilibrium, it depends only on bulk properties (density, temperature, etc.) through an equation of state. Here we show that in a wide class of active systems the pressure depends on the precise interactions between the active particles and the confining walls. In general, therefore, active fluids have no equation of state, their mechanical pressures exhibit anomalous properties that defy the familiar thermodynamic reasoning that holds in equilibrium. The pressure remains a function of state, however, in some specific and well-studied active models that tacitly restrict the character of the particle-wall and/or particle-particle interactions.Comment: 8 pages + 9 SI pages, Nature Physics (2015

    A circle swimmer at low Reynolds number

    Full text link
    Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, joined by two links of time-dependent length. For small strokes, we discuss the motion of the swimmer as a function of the separation angle between its links. We find that swimmers describe either clockwise or anticlockwise circular motion depending on the tilting angle in a non-trivial manner. The symmetry of the swimmer leads to a quadrupolar decay of the far flow field. We discuss the potential extensions and experimental realisation of our model.Comment: 9 pages, 9 Figure

    Scalar <i>φ</i><sup>4</sup> field theory for active-particle phase separation

    Get PDF
    Recent theories predict phase separation among orientationally disordered active particles whose propulsion speed decreases rapidly enough with density. Coarse-grained models of this process show time-reversal symmetry (detailed balance) to be restored for uniform states, but broken by gradient terms; hence detailed-balance violation is strongly coupled to interfacial phenomena. To explore the subtle generic physics resulting from such coupling we here introduce `Active Model B'. This is a scalar ϕ4\phi^4 field theory (or phase-field model) that minimally violates detailed balance via a leading-order square-gradient term. We find that this additional term has modest effects on coarsening dynamics, but alters the static phase diagram by creating a jump in (thermodynamic) pressure across flat interfaces. Both results are surprising, since interfacial phenomena are always strongly implicated in coarsening dynamics but are, in detailed-balance systems, irrelevant for phase equilibria.Comment: 15 pages, 7 figure

    Killing by type VI secretion drives genetic phase separation and correlates with increased cooperation

    Get PDF
    By nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations. Through mathematical modelling and experiments with Vibrio cholerae, we show how killing adjacent competitors via the Type VI secretion system (T6SS) precipitates phase separation via the ‘Model A' universality class of order-disorder transition mediated by killing. We mathematically demonstrate that T6SS-mediated killing should favour the evolution of public goods cooperation, and empirically support this prediction using a phylogenetic comparative analysis. This work illustrates the twin role played by the T6SS, dealing death to local competitors while simultaneously creating conditions potentially favouring the evolution of cooperation with kin
    corecore