28,510 research outputs found

    The structure of electronic polarization and its strain dependence

    Full text link
    The \phi(\kpp)\sim \kpp relation is called polarization structure. By density functional calculations, we study the polarization structure in ferroelectric perovskite PbTiO3_3, revealing (1) the \kpp point that contributes most to the electronic polarization, (2) the magnitude of bandwidth, and (3) subtle curvature of polarization dispersion. We also investigate how polarization structure in PbTiO3_3 is modified by compressive inplane strains. The bandwidth of polarization dispersion in PbTiO3_3 is shown to exhibit an unusual decline, though the total polarization is enhanced. As another outcome of this study, we formulate an analytical scheme for the purpose of identifying what determine the polarization structure at arbitrary \kpp points by means of Wannier functions. We find that \phi(\kpp) is determined by two competing factors: one is the overlaps between neighboring Wannier functions within the plane {\it perpendicular} to the polarization direction, and the other is the localization length {\it parallel} to the polarization direction. Inplane strain increases the former while decreases the latter, causing interesting non-monotonous effects on polarization structure. Finally, polarization dispersion in another paradigm ferroelectric BaTiO3_3 is discussed and compared with that of PbTiO3_3.Comment: 5 Figure

    Valley Dependent Optoelectronics from Inversion Symmetry Breaking

    Full text link
    Inversion symmetry breaking allows contrasted circular dichroism in different k-space regions, which takes the extreme form of optical selection rules for interband transitions at high symmetry points. In materials where band-edges occur at noncentral valleys, this enables valley dependent interplay of electrons with light of different circular polarizations, in analogy to spin dependent optical activities in semiconductors. This discovery is in perfect harmony with the previous finding of valley contrasted Bloch band features of orbital magnetic moment and Berry curvatures from inversion symmetry breaking [Phys. Rev. Lett. 99, 236809 (2007)]. A universal connection is revealed between the k-resolved optical oscillator strength of interband transitions, the orbital magnetic moment and the Berry curvatures, which also provides a principle for optical measurement of orbital magnetization and intrinsic anomalous Hall conductivity in ferromagnetic systems. The general physics is demonstrated in graphene where inversion symmetry breaking leads to valley contrasted optical selection rule for interband transitions. We discuss graphene based valley optoelectronics applications where light polarization information can be interconverted with electronic information.Comment: Expanded version, to appear in Phys. Rev.

    Mass and width of the sigma

    Full text link
    I report on recent work done in collaboration with Irinel Caprini and Gilberto Colangelo. We observe that the Roy equations lead to a representation of the pion pion scattering amplitude that exclusively involves observable quantities, but is valid for complex values of s. At low energies, this representation is dominated by the contributions from the two subtraction constants, which are known to remarkable precision from the low energy theorems of chiral perturbation theory. Evaluating the remaining contributions on the basis of the available data, we demonstrate that the lowest resonance carries the quantum numbers of the vacuum and occurs in the vicinity of the threshold. Although the uncertainties in the data are substantial, the pole position can be calculated quite accurately, because it occurs in the region where the amplitude is dominated by the subtractions. The calculation neatly illustrates the fact that the dynamics of the Goldstone bosons is governed by the symmetries of QCD.Comment: Contribution to the proceedings of MESON 2006 (Krakow

    Yield strength measurement of ferromagnetic materials based on the inverse magnetostrictive effect

    Get PDF
    Ferromagnetic materials are widely used in industry and risking the hazards of aging and degradation of their mechanical properties. This paper proposed a non-destructive method for the measurement of the yield strength of ferromagnetic materials imprinted by the materials’ microstructure as the microstructure influences the pattern of the inverse magnetostrictive effect of ferromagnetic materials. For experimental verification, yield strengths of ferromagnetic specimens were measured on an electromagnetic ultrasonic transducer (EMAT) detection system. The relationship between electromagnetic acoustic transducer signals and the static magnetic field strength was obtained, from which we extracted the pattern parameters related to the yield strength. The regression model of the pattern parameters versus the yield strength was established and then verified with trial on a specimen processed in the same batch with a maximum prediction accuracy of 12.78%

    Baryon enhancement in high-density QCD and relativistic heavy ion collisions

    Full text link
    We argue that the collinear factorization of the fragmentation functions in high energy nuclear collisions breaks down at transverse momenta pT≲Qs/gp_T \lesssim Q_s/g due to high parton densities in the colliding hadrons and/or nuclei. We find that gluon recombination dominates in that pTp_T region. We calculate the inclusive cross-section for π\pi meson and nucleon production using the low energy theorems for the scale anomaly in QCD, and compare our quantitative baryon-to-meson ratio to the RHIC data.Comment: 4 pages, 2 figure; Contribution to Quark Matter 2008 in Jaipur, India; submitted to J. Phys.

    Realizing Hopf Insulators in Dipolar Spin Systems

    Get PDF
    The Hopf insulator represents a topological state of matter that exists outside the conventional ten-fold way classification of topological insulators. Its topology is protected by a linking number invariant, which arises from the unique topology of knots in three dimensions. We predict that three-dimensional arrays of driven, dipolar-interacting spins are a natural platform to experimentally realize the Hopf insulator. In particular, we demonstrate that certain terms within the dipolar interaction elegantly generate the requisite non-trivial topology, and that Floquet engineering can be used to optimize dipolar Hopf insulators with large gaps. Moreover, we show that the Hopf insulator's unconventional topology gives rise to a rich spectrum of edge mode behaviors, which can be directly probed in experiments. Finally, we present a detailed blueprint for realizing the Hopf insulator in lattice-trapped ultracold dipolar molecules; focusing on the example of 40{}^{40}K87^{87}Rb, we provide quantitative evidence for near-term experimental feasibility.Comment: 6 + 7 pages, 3 figure

    Thermal Diffusivities of Functionalized Pentacene Semiconductors

    Get PDF
    We have measured the interlayer and in-plane (needle axis) thermal diffusivities of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn). The needle axis value is comparable to the phonon thermal conductivities of quasi-one dimensional organic metals with excellent pi-orbital overlap, and its value suggests that a significant fraction of heat is carried by optical phonons. Furthermore, the interlayer (c-axis) thermal diffusivity is at least an order of magnitude larger, and this unusual anisotropy implies very strong dispersion of optical modes in the interlayer direction, presumably due to interactions between the silyl-containing side groups. Similar values for both in-plane and interlayer diffusivities have been observed for several other functionalized pentacene semiconductors with related structures.Comment: 9 pages, including 4 figures; submitted to Applied Physics Letter

    Phase equilibrium in two orbital model under magnetic field

    Full text link
    The phase equilibrium in manganites under magnetic field is studied using a two orbital model, based on the equivalent chemical potential principle for the competitive phases. We focus on the magnetic field induced melting process of CE phase in half-doped manganites. It is predicted that the homogenous CE phase begins to decompose into coexisting ferromagnetic phase and CE phase once the magnetic field exceeds the threshold field. In a more quantitative way, the volume fractions of the two competitive phases in the phase separation regime are evaluated.Comment: 4 pages, 4 figure

    A_4 Symmetry and Lepton Masses and Mixing

    Full text link
    Stimulated by Ma's idea which explains the tribimaximal neutrino mixing by assuming an A_4 flavor symmetry, a lepton mass matrix model is investigated. A Frogatt-Nielsen type model is assumed, and the flavor structures of the masses and mixing are caused by the VEVs of SU(2)_L-singlet scalars \phi_i^u and \phi_i^d (i=1,2,3), which are assigned to {\bf 3} and ({\bf 1}, {\bf 1}',{\bf 1}'') of A_4, respectively.Comment: 13 pages including 1 table, errors in Sec.7 correcte

    Phase diagram and excitations of a Shiba molecule

    Full text link
    We analyze the phase diagram associated with a pair of magnetic impurities trapped in a superconducting host. The natural interplay between Kondo screening, superconductivity and exchange interactions leads to a rich array of competing phases, whose transitions are characterized by discontinuous changes of the total spin. Our analysis is based on a combination of numerical renormalization group techniques as well as semi-classical analytics. In addition to the expected screened and unscreened phases, we observe a new molecular doublet phase where the impurity spins are only partially screened by a single extended quasiparticle. Direct signatures of the various Shiba molecule states can be observed via RF spectroscopy.Comment: 13 pages, 7 figure
    • …
    corecore