1,332 research outputs found

    Origin of time reversal symmetry breaking in Y(1-y)Ca(y)Ba(2)Cu(3)O(7-x)

    Full text link
    We have studied the Zero Bias Conductance Peak (ZBCP) of the tunneling conductance measured on (1,1,0) oriented Y(1-y)Ca(y)Ba(2)Cu(3)O(7-x) thin films as a function of doping and of magnetic field. A spontaneous (zero field) split of the ZBCP was observed only in overdoped samples (either by O or by Ca). The magnitude of this split was found to be linear in doping. All samples exhibited a magnetic field splitting, also strongly doping dependent. The field susceptibility chi=d(delta)/dH diverges at the point at which spontaneous ZBCP splitting occurs, its inverse value, chi^(-1), following a linear doping dependence on both the underdoped and overdoped sides. We discuss these results in terms of recent theoretical models of Time Reversal Symmetry Breaking (TRSB).Comment: 5 figure

    Tunneling into the normal state of Pr(2-x)CexCuO4

    Full text link
    The temperature dependence of the tunneling conductance was measured for various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to vanish above a certain temperature T*. T* is greater than Tc for the underdoped region and it follows Tc on the overdoped side. This behavior suggests finite pairing amplitude above Tc on the underdoped side

    Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magneto-transport study

    Full text link
    The superconducting transition temperature, Tc, of the SrTiO3/LaAlO3 interface was varied by the electric field effect. The anisotropy of the upper critical field and the normal state magneto-transport were studied as a function of gate voltage. The spin-orbit coupling energy is extracted. This tunable energy scale is used to explain the strong gate dependence of the mobility and of the anomalous Hall signal observed. The spin-orbit coupling energy follows Tc for the electric field range under study

    Shubnikov-de Haas oscillations in SrTiO3\LaAlO3 interface

    Full text link
    Quantum magnetic oscillations in SrTiO3/\LaAlO3 interface are observed. The evolution of their frequency and amplitude at various gate voltages and temperatures is studied. The data are consistent with the Shubnikov de-Haas theory. The Hall resistivity rho exhibits nonlinearity at low magnetic field. It is fitted assuming multiple carrier contributions. The comparison between the mobile carrier density inferred from the Hall data and the oscillation frequency suggests multiple valley and spin degeneracy. The small amplitude of the oscillations is discussed in the framework of the multiple band scenario

    Evolution of a bosonic mode across the superconducting dome in the high-Tc cuprate Pr(2-x)Ce(x)CuO(4-{\delta})

    Full text link
    We report a detailed spectroscopic study of the electron doped cuprate superconductor Pr(2-x)Ce(x)CuO(4-{\delta}) using point contact junctions for x=0.125(underdoped), x=0.15(optimally doped) and x=0.17(overdoped). From our conductance measurements we are able to identify bosonic resonances for each doping. These excitations disappear above the critical temperature, and above the critical magnetic field. We find that the energy of the bosonic excitations decreases with doping, which excludes lattice vibrations as the paring glue. We conclude that the bosonic mediator for these cuprates is more likely to be spin excitations.Comment: 4 page

    Role of oxygen in the electron-doped superconducting cuprates

    Full text link
    We report on resistivity and Hall measurements in thin films of the electron-doped superconducting cuprate Pr2−x_{2-x}Cex_{x}CuO4±δ_{4\pm\delta}. Comparisons between x = 0.17 samples subjected to either ion-irradiation or oxygenation demonstrate that changing the oxygen content has two separable effects: 1) a doping effect similar to that of cerium, and 2) a disorder effect. These results are consistent with prior speculations that apical oxygen removal is necessary to achieve superconductivity in this compound.Comment: 5 pages, 5 figure
    • …
    corecore