137,535 research outputs found
Self-supporting liberals and their cliques : an axiomatic characterization
social groupssocial status;social choice
Profiles of thermal line emission from advection dominated accretion flows
Recently, Narayan & Raymond (1999) proposed that the thermal emission lines
from the hot plasma in advection dominated accretion flows (ADAFs) are
potentially observable with the next generation of X-ray observatories, with
which the physical properties of some X-ray sources can be probed. In ADAFs,
the temperature of the ion is so high that the thermal broadening of the line
is important. We calculate the profiles of thermal line emission from ADAFs, in
which both the thermal and Doppler broadening have been considered. It is found
that the double-peaked profiles are present for high inclination angles between
the axis of disk and the line of sight. The double-peaked profiles are smeared
in low inclination cases, and completely disappear while the inclination angle
is less than , where the thermal and turbulent broadening dominated
on the line profiles. We also note that the thermal line profile is affected by
the location of the transition radius of ADAF. The self-similar
height-integrated disk structure and the emissivity with power-law dependence
of radius are adopted in our calculations. The results obtained in this work
can be used as a diagnosis on the future X-ray observations of the thermal
lines. Some important physical quantities of ADAFs could be inferred from
future thermal line observations.Comment: 7 page
Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels
The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. © 2013 Mowrey et al
Analysis of excited quark propagator effects on neutron charge form factor
The charge form factor and charge radius of neutron are investigated in the
perturbative chiral quark model (PCQM) with considering both the ground and
excited states in the quark propagator. A Cornell-like potential is extracted
in accordance with the predetermined ground state quark wavefunction, and the
excited quark states are derived by solving the Dirac equation with the
extracted PCQM potential numerically. The study reveals that the contributions
of the excited quark states are considerably influential in the charge form
factor and charge radius of neutron as expected, and the total results are
significantly improved and increased by nearly four times by including the
excited states in the quark propagator. The theoretical PCQM results are found,
including the ground and excited quark propagators, in good agreement with the
recent lattice QCD values at pion mass of about 130 MeV.Comment: 8 pages, 8 figure
Long-term optical and radio variability of BL Lacertae
Well-sampled optical and radio light curves of BL Lacertae in B, V, R, I
bands and 4.8, 8.0, 14.5 GHz from 1968 to 2014 were presented in this paper. A
possible yr period in optical bands and a yr
period in radio bands were detected based on discrete correlation function,
structure function as well as Jurkevich method. Correlations among different
bands were also analyzed and no reliable time delay was found between optical
bands. Very weak correlations were detected between V band and radio bands.
However, in radio bands the variation at low frequency lagged that at high
frequency obviously. The spectrum of BL Lacertae turned mildly bluer when the
object turned brighter, and stronger bluer-when-brighter trends were found for
short flares. A scenario including a precessing helical jet and periodic shocks
was put forward to interpret the variation characteristics of BL Lacertae.Comment: 7 pages, 11 figures, submitte
The radiation properties of an accretion disk with a non-zero torque on its inner edge
The structure of the inner edge of the accretion disk around a black hole can
be altered, if the matter inside the marginally stable orbit is magnetically
connected to the disk. In this case, a non-zero torque is exerted on its inner
edge, and the accretion efficiency can be much higher than that in
the standard accretion disk model. We explore the radiation properties of an
accretion disk at its sonic point around a black hole with a time-steady torque
exerted on the inner edge of the disk. The local structure of the accretion
flow at the sonic point is investigated in the frame of general relativity. It
is found that the accretion flow will be optically thin at its sonic point for
most cases, if the additional accretion efficiency caused by
the torque is as high as 10 %. The results imply that the variable torque
may trigger transitions of the flow between different accretion types.Comment: 6 pages, to appear in PASJ, Vol. 55, No. 1 (February 25, 2003
Nuclear spin qubits in a trapped-ion quantum computer
Physical systems must fulfill a number of conditions to qualify as useful
quantum bits (qubits) for quantum information processing, including ease of
manipulation, long decoherence times, and high fidelity readout operations.
Since these conditions are hard to satisfy with a single system, it may be
necessary to combine different degrees of freedom. Here we discuss a possible
system, based on electronic and nuclear spin degrees of freedom in trapped
ions. The nuclear spin yields long decoherence times, while the electronic
spin, in a magnetic field gradient, provides efficient manipulation, and the
optical transitions of the ions assure a selective and efficient initialization
and readout.Comment: 7 page
- …
