43,846 research outputs found
Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks
Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
Modular Invariance for Twisted Modules over a Vertex Operator Superalgebra
The purpose of this paper is to generalize Zhu's theorem about characters of
modules over a vertex operator algebra graded by integer conformal weights, to
the setting of a vertex operator superalgebra graded by rational conformal
weights. To recover SL_2(Z)-invariance of the characters it turns out to be
necessary to consider twisted modules alongside ordinary ones. It also turns
out to be necessary, in describing the space of conformal blocks in the
supersymmetric case, to include certain `odd traces' on modules alongside
traces and supertraces. We prove that the set of supertrace functions, thus
supplemented, spans a finite dimensional SL_2(Z)-invariant space. We close the
paper with several examples.Comment: 42 pages. Published versio
Amplifier for scanning tunneling microscopy at MHz frequencies
Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of
circa 1kHz around DC. Here, we develop, build and test a novel amplifier
circuit capable of measuring the tunneling current in the MHz regime while
simultaneously performing conventional STM measurements. This is achieved with
an amplifier circuit including a LC tank with a quality factor exceeding 600
and a home-built, low-noise high electron mobility transistor (HEMT). The
amplifier circuit functions while simultaneously scanning with atomic
resolution in the tunneling regime, i.e. at junction resistances in the range
of giga-ohms, and down towards point contact spectroscopy. To enable high
signal-to-noise and meet all technical requirements for the inclusion in a
commercial low temperature, ultra-high vacuum STM, we use superconducting
cross-wound inductors and choose materials and circuit elements with low heat
load. We demonstrate the high performance of the amplifier by spatially mapping
the Poissonian noise of tunneling electrons on an atomically clean Au(111)
surface. We also show differential conductance spectroscopy measurements at
3MHz, demonstrating superior performance over conventional spectroscopy
techniques. Further, our technology could be used to perform impedance matched
spin resonance and distinguish Majorana modes from more conventional edge
states
Water productivity in Zhanghe Irrigation System: issues of scale
Irrigation systemsWater productivityReservoirsWater useWater stressWater conservationRicePaddy fieldsCrop yield
Hyperaccretion Disks around Neutron Stars
(Abridged) We here study the structure of a hyperaccretion disk around a
neutron star. We consider a steady-state hyperaccretion disk around a neutron
star, and as a reasonable approximation, divide the disk into two regions,
which are called inner and outer disks. The outer disk is similar to that of a
black hole and the inner disk has a self-similar structure. In order to study
physical properties of the entire disk clearly, we first adopt a simple model,
in which some microphysical processes in the disk are simplified, following
Popham et al. and Narayan et al. Based on these simplifications, we
analytically and numerically investigate the size of the inner disk, the
efficiency of neutrino cooling, and the radial distributions of the disk
density, temperature and pressure. We see that, compared with the black-hole
disk, the neutron star disk can cool more efficiently and produce a much higher
neutrino luminosity. Finally, we consider an elaborate model with more physical
considerations about the thermodynamics and microphysics in the neutron star
disk (as recently developed in studying the neutrino-cooled disk of a black
hole), and compare this elaborate model with our simple model. We find that
most of the results from these two models are basically consistent with each
other.Comment: 44 pages, 10 figures, improved version following the referees'
comments, main conclusions unchanged, accepted for publication in Ap
- …