6,116 research outputs found
A convenient implementation of the overlap between arbitrary Hartree-Fock-Bogoliubov vacua for projection
Overlap between Hartree-Fock-Bogoliubov(HFB) vacua is very important in the
beyond mean-field calculations. However, in the HFB transformation, the
matrices are sometimes singular due to the exact emptiness () or full
occupation () of some single-particle orbits. This singularity may cause
some problem in evaluating the overlap between HFB vacua through Pfaffian. We
found that this problem can be well avoided by setting those zero occupation
numbers to some tiny values (e.g., ). This treatment does not
change the HFB vacuum state because are numerically zero
relative to 1. Therefore, for arbitrary HFB transformation, we say that the
matrices can always be nonsingular. From this standpoint, we present a
new convenient Pfaffian formula for the overlap between arbitrary HFB vacua,
which is especially suitable for symmetry restoration. Testing calculations
have been performed for this new formula. It turns out that our method is
reliable and accurate in evaluating the overlap between arbitrary HFB vacua.Comment: 5 pages, 2 figures. Published versio
Physical mechanism of superluminal traversal time: interference between multiple finite wave packets
The mechanism of superluminal traversal time through a potential well or
potential barrier is investigated from the viewpoint of interference between
multiple finite wave packets, due to the multiple reflections inside the well
or barrier. In the case of potential-well traveling that is classically
allowed, each of the successively transmitted constituents is delayed by a
subluminal time. When the thickness of the well is much smaller in comparision
with a characteristic length of the incident wave packet, the reshaped wave
packet in transmission maintains the profile of the incident wave packet. In
the case of potential-barrier tunneling that is classically forbidden, though
each of the successively transmitted constituents is delayed by a time that is
independent of the barrier thickness, the interference between multiple
transmitted constituents explains the barrier-thickness dependence of the
traversal time for thin barriers and its barrier-thickness independence for
thick barriers. This manifests the nature of Hartman effect.Comment: 9 pages, 3 figures, Some comments and suggestions are appreciate
Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities
We propose and analyze a hybrid device by integrating a microscale diamond
beam with a single built-in nitrogen-vacancy (NV) center spin to a
superconducting coplanar waveguide (CPW) cavity. We find that under an ac
electric field the quantized motion of the diamond beam can strongly couple to
the single cavity photons via dielectric interaction. Together with the strong
spin-motion interaction via a large magnetic field gradient, it provides a
hybrid quantum device where the dia- mond resonator can strongly couple both to
the single microwave cavity photons and to the single NV center spin. This
enables coherent information transfer and effective coupling between the NV
spin and the CPW cavity via mechanically dark polaritons. This hybrid
spin-electromechanical de- vice, with tunable couplings by external fields,
offers a realistic platform for implementing quantum information with single NV
spins, diamond mechanical resonators, and single microwave photons.Comment: Accepted by Phys. Rev. Applie
Comment on "Single-mode excited entangled coherent states"
In Xu and Kuang (\textit{J. Phys. A: Math. Gen.} 39 (2006) L191), the authors
claim that, for single-mode excited entangled coherent states , \textquotedblleft the photon excitations lead to the
decrease of the concurrence in the strong field regime of and
the concurrence tends to zero when ". This is wrong.Comment: 4 apges, 2 figures, submitted to JPA 15 April 200
Effect of a Zn impurity on T_c and its implication to pairing symmetry in LaFeAsOF
The effect of non-magnetic Zn impurity on superconductivity in
LaFeZnAsOF system is studied systematically. In the
presence of Zn impurity, the superconducting transition temperature increases
in the under-doped regime, remains unchanged in the optimally doped regime, and
is severely suppressed in the over-doped regime. Our results suggest a switch
of the symmetry of the superconducting order parameters from a -wave to
or -wave states as the charge carrier doping increases in
FeAs-based superconductors.Comment: 4 pages, 4 figures. Format changed and a few revisons mad
- …