449 research outputs found
Systematic {\em ab initio} study of the phase diagram of epitaxially strained SrTiO
We use density-functional theory with the local-density approximation to
study the structural and ferroelectric properties of SrTiO under misfit
strains. Both the antiferrodistortive (AFD) and ferroelectric (FE)
instabilities are considered. The rotation of the oxygen octahedra and the
movement of the atoms are fully relaxed within the constraint of a fixed
in-plane lattice constant. We find a rich misfit strain-induced phase
transition sequence and is obtained only when the AFD distortion is taken into
account. We also find that compressive misfit strains induce ferroelectricity
in the tetragonal low temperature phase only whilst tensile strains induce
ferroelectricity in the orthorhombic phases only. The calculated FE
polarization for both the tetragonal and orthorhombic phases increases
monotonically with the magnitude of the strains. The AFD rotation angle of the
oxygen octahedra in the tetragonal phase increases dramatically as the misfit
strain goes from the tensile to compressive strain region whilst it decreases
slightly in the orthorhombic (FO4) phase. This reveals why the polarization in
the epitaxially strained SrTiO would be larger when the tensile strain is
applied, since the AFD distortion is found to reduce the FE instability and
even to completely suppress it in the small strain region. Finally, our
analysis of the average polar distortion and the charge density distribution
suggests that both the Ti-O and Sr-O layers contribute significantly to the FE
polarization
Phase transitions and ferroelectric properties in BiScO3-Bi(Zn1/2Ti1/2)O3-BaTiO3 solid solutions
Ceramics solid solutions within the ternary perovskite system Bi(Zn1/2Ti1/2)O3-BiScO3-BaTiO3 were synthesized via solid-state processing techniques. The crystal structure of sintered ceramics was analyzed by x-ray diffraction. A stable perovskite phase was obtained for all compositions with a BaTiO3 content greater than 50 mol %. Furthermore, a change in symmetry from pseudocubic to tetragonal was observed as the mole fraction of BaTiO3 increased. Dielectric measurements show a dielectric anomaly associated with a phase transformation over the temperature range of 30 °C–210 °C for all compositions. Examination of the polarization hysteresis behavior revealed weakly nonlinear hysteresis loops. With these data, ferroelectric phase diagrams were derived showing the transition between the pseudocubic relaxor behavior to the tetragonal normal ferroelectric behavior. This transition was also correlated with changes in the diffuseness parameter
Recommended from our members
Shear stress regulation of miR-93 and miR-484 maturation through nucleolin.
Pulsatile shear (PS) and oscillatory shear (OS) elicit distinct mechanotransduction signals that maintain endothelial homeostasis or induce endothelial dysfunction, respectively. A subset of microRNAs (miRs) in vascular endothelial cells (ECs) are differentially regulated by PS and OS, but the regulation of the miR processing and its implications in EC biology by shear stress are poorly understood. From a systematic in silico analysis for RNA binding proteins that regulate miR processing, we found that nucleolin (NCL) is a major regulator of miR processing in response to OS and essential for the maturation of miR-93 and miR-484 that target mRNAs encoding Krüppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS). Additionally, anti-miR-93 and anti-miR-484 restore KLF2 and eNOS expression and NO bioavailability in ECs under OS. Analysis of posttranslational modifications of NCL identified that serine 328 (S328) phosphorylation by AMP-activated protein kinase (AMPK) was a major PS-activated event. AMPK phosphorylation of NCL sequesters it in the nucleus, thereby inhibiting miR-93 and miR-484 processing and their subsequent targeting of KLF2 and eNOS mRNA. Elevated levels of miR-93 and miR-484 were found in sera collected from individuals afflicted with coronary artery disease in two cohorts. These findings provide translational relevance of the AMPK-NCL-miR-93/miR-484 axis in miRNA processing in EC health and coronary artery disease
Theory of Radio Frequency Spectroscopy Experiments in Ultracold Fermi Gases and Their Relation to Photoemission Experiments in the Cuprates
In this paper we present an overview of radio frequency (RF) spectroscopy in
the atomic Fermi superfluids. An ultimate goal is to suggest new directions in
the cold gas research agenda from the condensed matter perspective.Our focus is
on the experimental and theoretical literature of cold gases and photoemission
spectroscopy of the cuprates particularly as it pertains to areas of overlap.
This paper contains a systematic overview of the theory of RF spectroscopy,
both momentum integrated and momentum resolved. We discuss the effects of
traps, population imbalance, final state interactions over the entire range of
temperatures and compare theory and experiment. We show that this broad range
of phenomena can be accomodated within the BCS-Leggett description of BCS-BEC
crossover and that this scheme also captures some of the central observations
in photoemission experiments in the cuprates. In this last context, we note
that the key themes which have emerged in cuprate photoemission studies involve
characterization of the fermionic self energy, of the pseudogap and of the
effects of superconducting coherence (in passing from above to below the
superfluid transition temperature, ).These issues have a counterpart in
the cold Fermi gases and it would be most useful in future to use these atomic
systems to address these and the more sweeping question of how to describe that
anomalous superfluid phase which forms in the presence of a normal state
excitation gap.Comment: 23 pages, 22 figure
Quantum transport in ultracold atoms
Ultracold atoms confined by engineered magnetic or optical potentials are
ideal systems for studying phenomena otherwise difficult to realize or probe in
the solid state because their atomic interaction strength, number of species,
density, and geometry can be independently controlled. This review focuses on
quantum transport phenomena in atomic gases that mirror and oftentimes either
better elucidate or show fundamental differences with those observed in
mesoscopic and nanoscopic systems. We discuss significant progress in
performing transport experiments in atomic gases, contrast similarities and
differences between transport in cold atoms and in condensed matter systems,
and survey inspiring theoretical predictions that are difficult to verify in
conventional setups. These results further demonstrate the versatility offered
by atomic systems in the study of nonequilibrium phenomena and their promise
for novel applications.Comment: 24 pages, 7 figures. A revie
Predicting Target DNA Sequences of DNA-Binding Proteins Based on Unbound Structures
DNA-binding proteins such as transcription factors use DNA-binding domains (DBDs) to bind to specific sequences in the genome to initiate many important biological functions. Accurate prediction of such target sequences, often represented by position weight matrices (PWMs), is an important step to understand many biological processes. Recent studies have shown that knowledge-based potential functions can be applied on protein-DNA co-crystallized structures to generate PWMs that are considerably consistent with experimental data. However, this success has not been extended to DNA-binding proteins lacking co-crystallized structures. This study aims at investigating the possibility of predicting the DNA sequences bound by DNA-binding proteins from the proteins' unbound structures (structures of the unbound state). Given an unbound query protein and a template complex, the proposed method first employs structure alignment to generate synthetic protein-DNA complexes for the query protein. Once a complex is available, an atomic-level knowledge-based potential function is employed to predict PWMs characterizing the sequences to which the query protein can bind. The evaluation of the proposed method is based on seven DNA-binding proteins, which have structures of both DNA-bound and unbound forms for prediction as well as annotated PWMs for validation. Since this work is the first attempt to predict target sequences of DNA-binding proteins from their unbound structures, three types of structural variations that presumably influence the prediction accuracy were examined and discussed. Based on the analyses conducted in this study, the conformational change of proteins upon binding DNA was shown to be the key factor. This study sheds light on the challenge of predicting the target DNA sequences of a protein lacking co-crystallized structures, which encourages more efforts on the structure alignment-based approaches in addition to docking- and homology modeling-based approaches for generating synthetic complexes
Follicular Oocytes Better Support Development in Rabbit Cloning Than Oviductal Oocytes
This study was conducted to determine the effect of rabbit oocytes collected from ovaries or oviducts on the developmental potential of nuclear transplant embryos. Donor nuclei were obtained from adult skin fibroblasts, cumulus cells, and embryonic blastomeres. Rabbit oocytes were flushed from the oviducts (oviductal oocytes) or aspirated from the ovaries (follicular oocytes) of superovulated does at 10, 11, or 12-h post-hCG injection. The majority of collected oocytes were still attached to the sites of ovulation on the ovaries. We found that follicular oocytes had a significantly higher rate of fusion with nuclear donor cells than oviductal oocytes. There was no difference in the cleavage rate between follicular and oviductal groups, but morula and blastocyst development was significantly higher in the follicular group than in the oviductal group. Two live clones were produced in follicular group using blastomere and cumulus nuclear donors, whereas one live clone was produced in the oviductal group using a cumulus nuclear donor. These results demonstrate that cloned rabbit embryos derived from follicular oocytes have better developmental competence than those derived from oviductal oocytes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90481/1/cell-2E2011-2E0030.pd
Age- and gender-specific population attributable risks of metabolic disorders on all-cause and cardiovascular mortality in Taiwan
[[abstract]]ABSTRACT: BACKGROUND: The extent of attributable risks of metabolic syndrome (MetS) and its components on mortality remains unclear, especially with respect to age and gender. We aimed to assess the age- and gender-specific population attributable risks (PARs) for cardiovascular disease (CVD)-related mortality and all-cause mortality for public health planning. METHODS: A total of 2,092 men and 2,197 women 30 years of age and older, who were included in the 2002 Taiwan Survey of Hypertension, Hyperglycemia, and Hyperlipidemia (TwSHHH), were linked to national death certificates acquired through December 31, 2009. Cox proportional hazard models were used to calculate adjusted hazard ratios and PARs for mortality, with a median follow-up of 7.7 years. RESULTS: The respective PAR percentages of MetS for all-cause and CVD-related mortality were 11.6 and 39.2 in men, respectively, and 18.6 and 44.4 in women, respectively. Central obesity had the highest PAR for CVD mortality in women (57.5%), whereas arterial hypertension had the highest PAR in men (57.5%). For all-cause mortality, younger men and post-menopausal women had higher PARs related to Mets and its components; for CVD mortality, post-menopausal women had higher overall PARs than their pre-menopausal counterparts. CONCLUSIONS: MetS has a limited application to the PAR for all-cause mortality, especially in men; its PAR for CVD mortality is more evident. For CVD mortality, MetS components have higher PARs than MetS itself, especially hypertension in men and waist circumference in post-menopausal women. In addition, PARs for diabetes mellitus and low HDL-cholesterol may exceed 20%. We suggest differential control of risk factors in different subpopulation as a strategy to prevent CVD-related mortality
Long-term medical utilization following ventilator-associated pneumonia in acute stroke and traumatic brain injury patients: a case-control study
<p>Abstract</p> <p>Background</p> <p>The economic burden of ventilator-associated pneumonia (VAP) during the index hospitalization has been confirmed in previous studies. However, the long-term economic impact is still unclear. The aim of this study is to examine the effect of VAP on medical utilization in the long term.</p> <p>Methods</p> <p>This is a retrospective case-control study. Study subjects were patients experiencing their first traumatic brain injury, acute hemorrhagic stroke, or acute ischemic stroke during 2004. All subjects underwent endotracheal intubation in the emergency room (ER) on the day of admission or the day before admission, were transferred to the intensive care unit (ICU) and were mechanically ventilated for 48 hours or more. A total of 943 patients who developed VAP were included as the case group, and each was matched with two control patients without VAP by age ( ± 2 years), gender, diagnosis, date of admission ( ± 1 month) and hospital size, resulting in a total of 2,802 patients in the study. Using robust regression and Poisson regression models we examined the effect of VAP on medical utilization including hospitalization expenses, outpatient expenses, total medical expenses, number of ER visits, number of readmissions, number of hospitalization days and number of ICU days, during the index hospitalization and during the following 2-year period.</p> <p>Results</p> <p>Patients in the VAP group had higher hospitalization expenses, longer length of stay in hospital and in ICU, and a greater number of readmissions than the control group patients.</p> <p>Conclusions</p> <p>VAP has a significant impact on medical expenses and utilization, both during the index hospitalization during which VAP developed and in the longer term.</p
- …