27,946 research outputs found

    Discrete, sample introduction devices in analytical optical-emission spectroscopy

    Get PDF
    Imperial Users onl

    B−>πlνB -> \pi l \nu Form Factors Calculated on the Light-Front

    Full text link
    A consistent treatment of B→πlνB\rightarrow \pi l \nu decay is given on the light-front. The BB to π\pi transition form factors are calculated in the entire physical range of momentum transfer for the first time. The valence-quark contribution is obtained using relativistic light-front wave functions. Higher quark-antiquark Fock-state of the BB-meson bound state is represented effectively by the ∣B∗π⟩|B^*\pi\rangle configuration, and its effect is calculated in the chiral perturbation theory. Wave function renormalization is taken into account consistently. The ∣B∗π⟩|B^*\pi\rangle contribution dominates near the zero-recoil point (q2≃25q^2\simeq 25 GeV2^2), and decreases rapidly as the recoil momentum increases. We find that the calculated form factor f+(q2)f_+(q^2) follows approximately a dipole q2q^2-dependence in the entire range of momentum transfer.Comment: Revtex, 19 pages, 9 figure

    A simplified model of the source channel of the Leksell Gamma Knife(R)^(R): testing multisource configurations with PENELOPE

    Full text link
    A simplification of the source channel geometry of the Leksell Gamma Knife®^{\circledR}, recently proposed by the authors and checked for a single source configuration (Al-Dweri et al 2004), has been used to calculate the dose distributions along the xx, yy and zz axes in a water phantom with a diameter of 160~mm, for different configurations of the Gamma Knife including 201, 150 and 102 unplugged sources. The code PENELOPE (v. 2001) has been used to perform the Monte Carlo simulations. In addition, the output factors for the 14, 8 and 4~mm helmets have been calculated. The results found for the dose profiles show a qualitatively good agreement with previous ones obtained with EGS4 and PENELOPE (v. 2000) codes and with the predictions of GammaPlan®^{\circledR}. The output factors obtained with our model agree within the statistical uncertainties with those calculated with the same Monte Carlo codes and with those measured with different techniques. Owing to the accuracy of the results obtained and to the reduction in the computational time with respect to full geometry simulations (larger than a factor 15), this simplified model opens the possibility to use Monte Carlo tools for planning purposes in the Gamma Knife®^{\circledR}.Comment: 13 pages, 8 figures, 5 table
    • …
    corecore