12 research outputs found

    Estimating void fraction in a hydraulic jump by measurements of pixel intensity

    Get PDF
    A hydraulic jump is a sudden transition from supercritical to subcritical flow. It is characterized by a highly turbulent roller region with a bubbly two-phase flow structure. The present study aims to estimate the void fraction in a hydraulic jump using a flow visualization technique. The assumption that the void fraction in a hydraulic jump could be estimated based on images' pixel intensity was first proposed by Mossa and Tolve (J Fluids Eng 120:160-165, 1998). While Mossa and Tolve (J Fluids Eng 120:160-165, 1998) obtained vertically averaged air concentration values along the hydraulic jump, herein we propose a new visualization technique that provides air concentration values in a vertical 2-D matrix covering the whole area of the jump roller. The results obtained are found to be consistent with new measurements using a dual-tip conductivity probe and show that the image processing procedure (IPP) can be a powerful tool to complement intrusive probe measurements. Advantages of the new IPP include the ability to determine instantaneous and average void fractions simultaneously at different locations along the hydraulic jump without perturbing the flow, although it is acknowledged that the results are likely to be more representative in the vicinity of sidewall than at the center of the flume

    Characteristics of clustered particles in skimming flows on a stepped spillway

    Get PDF
    Air–water flows at hydraulic structures are commonly observed and called white waters. The free-surface aeration is characterised by some intense exchanges of air and water leading to complex air–water structures including some clustering. The number and properties of clusters may provide some measure of the level of particle-turbulence and particle–particle interactions in the high-velocity air–water flows. Herein a re-analysis of air–water clusters was applied to a highly aerated free-surface flow data set (Chanson and Carosi, Exp Fluids 42:385–401, 2007). A two-dimensional cluster analysis was introduced combining a longitudinal clustering criterion based on near-wake effect and a side-by-side particle detection method. The results highlighted a significant number of clustered particles in the high-velocity free-surface flows. The number of bubble/droplet clusters per second and the percentage of clustered particles were significantly larger using the two-dimensional cluster analysis than those derived from earlier longitudinal detection techniques only. A number of large cluster structures were further detected. The results illustrated the complex interactions between entrained air and turbulent structures in skimming flow on a stepped spillway, and the cluster detection method may apply to other highly aerated free-surface flows

    Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements

    Get PDF
    In an open channel, a change from a supercritical to subcritical flow is a strong dissipative process called a hydraulic jump. Herein some new measurements of free-surface fluctuations of the impingement perimeter and integral turbulent time and length scales in the roller are presented with a focus on turbulence in hydraulic jumps with a marked roller. The observations highlighted the fluctuating nature of the impingement perimeter in terms of both longitudinal and transverse locations. The results showed further the close link between the production and detachment of large eddies in jump shear layer, and the longitudinal fluctuations of the jump toe. They highlighted the importance of the impingement perimeter as the origin of the developing shear layer and a source of vorticity. The air–water flow measurements emphasised the intense flow aeration. The turbulent velocity distributions presented a shape similar to a wall jet solution with a marked shear layer downstream of the impingement point. The integral turbulent length scale distributions exhibited a monotonic increase with increasing vertical elevation within 0.2 < Lz/d1 < 0.8 in the shear layer, where Lz is the integral turbulent length scale and d1 the inflow depth, while the integral turbulent time scales were about two orders of magnitude smaller than the period of impingement position longitudinal oscillations

    Air entrainment and scale effects in hydraulic jumps with small froude numbers

    No full text
    The transition from supercritical to subcritical flow is characterised by a strong dissipative mechanism, a hydraulic jump. In the present study, the air-water properties were investigated experimentally in hydraulic jumps with relatively small Froude numbers (2.4 < Fr < 5.1) and relatively large Reynolds numbers. A comparative analysis demonstrated that, for hydraulic jumps with Fr = 5.1, the void fraction data obtained with Re < 4×10 could not be scaled up to Re = 1×10. Most air-water flow properties measured with Reynolds numbers up to 1.25×10 could not be extrapolated to large-size prototype structures without significant scale effects in terms of bubble count rate, turbulence and bubble chord time distributions. The findings have some major implications of civil, environmental and sanitary engineering designs, because most hydraulic structures, storm water systems and water treatment facilities operate with Reynolds numbers larger than 10 to over 10

    Calculation of electrical insulation of C 4

    No full text
    corecore