259 research outputs found

    CP1CP^{1} model with Hopf term and fractional spin statistics

    Get PDF
    We reconsider the CP1CP^{1} model with the Hopf term by using the Batalin-Fradkin-Tyutin (BFT) scheme, which is an improved version of the Dirac quantization method. We also perform a semi-classical quantization of the topological charge Q sector by exploiting the collective coordinates to explicitly show the fractional spin statistics.Comment: 15 page

    A Dual Geometry of the Hadron in Dense Matter

    Full text link
    We identify the dual geometry of the hadron phase of dense nuclear matter and investigate the confinement/deconfinement phase transition. We suggest that the low temperature phase of the RN black hole with the full backreaction of the bulk gauge field is described by the zero mass limit of the RN black hole with hard wall. We calculated the density dependence of critical temperature and found that the phase diagram closes. We also study the density dependence of the rho meson mass.Comment: 16 pages, 4 figures, typos corrected, references adde

    Fluctuations around the Tachyon Vacuum in Open String Field Theory

    Full text link
    We consider quadratic fluctuations around the tachyon vacuum numerically in open string field theory. We work on a space HNvac{\cal H}_N^{{\rm vac}} spanned by basis string states used in the Schnabl's vacuum solution. We show that the truncated form of the Schnabl's vacuum solution on HNvac{\cal H}_N^{{\rm vac}} is well-behaved in numerical work. The orthogonal basis for the new BRST operator Q~\tilde Q on HNvac{\cal H}_N^{{\rm vac}} and the quadratic forms of potentials for independent fields around the vacuum are obtained. Our numerical results support that the Schnabl's vacuum solution represents the minimum energy solution for arbitrary fluctuations also in open string field theory.Comment: 16 pages, 2 figures, some comments and one table added, version to appear in JHE

    A Holographic Model of Strange Metals

    Full text link
    We give a review on our recent work arXiv:1006.0779 [hep-th] and arXiv:1006.1719 [hep-th], in which properties of holographic strange metals were investigated. The background is chosen to be anisotropic scaling solution in Einstein-Maxwell-Dilaton theory with a Liouville potential. The effects of bulk Maxwell field, an extra U(1) gauge field and probe D-branes on the DC conductivity, the DC Hall conductivity and the AC conductivity are extensively analyzed. We classify behaviors of the conductivities according to the parameter ranges in the bulk theory and characterize conditions when the holographic results can reproduce experimental data.Comment: 34 pages, 15 figures, minor correction

    Particle Probe of Horava-Lifshitz Gravity

    Full text link
    Kehagias-Sfetsos black hole in Ho\v{r}ava-Lifshitz gravity is probed through particle geodesics. Gravitational force of KS black hole becomes weaker than that of Schwarzschild around horizon and interior space. Particles can be always scattered or trapped in new closed orbits, unlike those falling forever in Schwarzschild black. The properties of null and timelike geodesics are classified with values of coupling constants. The precession rates of the orbits are evaluated. The time trajectories are also classified under different values of coupling constants for both null and timelike geodesics. Physical phenomena that may be observable are discussed.Comment: 10 pages, 8 figure

    The vacuum bubbles in de Sitter background and black hole pair creation

    Full text link
    We study the possible types of the nucleation of vacuum bubbles. We classify vacuum bubbles in de Sitter background and present some numerical solutions. The thin-wall approximation is employed to obtain the nucleation rate and the radius of vacuum bubbles. With careful analysis we confirm that Parke's formula is also applicable to the large true vacuum bubbles. The nucleation of the false vacuum bubble in de Sitter background is also evaluated. The tunneling process in the potential with degenerate vacua is analyzed as the limiting cases of the large true vacuum bubble and false vacuum bubble. Next, we consider the pair creation of black holes in the background of bubble solutions. We obtain static bubble wall solutions of junction equation with black hole pair. The masses of created black holes are uniquely determined by the cosmological constant and surface tension on the wall. Finally, we obtain the rate of pair creation of black holes.Comment: 3 figures, minor including errors and typos corrected, and refs. adde

    Semiclassical strings in AdS(3) X S^2

    Full text link
    In this paper, we investigate the semiclassical strings in AdS(3)XS^2, in which the string configuration of AdS(3) is classified to three cases depending on the parameters. Each of these has a different anomalous dimension proportional to logS, S^(1/3) and S, where S is a angular momentum on AdS(3). Further we generalize the dispersion relations for various string configuration on AdS(3)XS^2.Comment: 15 pages, added reference

    Acetic acid-indigo carmine chromoendoscopy for delineating early gastric cancers: its usefulness according to histological type

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoscopic treatments, such as endoscopic submucosal dissection (ESD) and laparoscopic gastrectomy, are increasingly used to treat a subset of patients with early gastric cancer (EGC). To achieve successful outcomes, it is very important to accurately determine the lateral extent of the tumor. Therefore, we investigated the diagnostic performance of chromoendoscopy using indigo carmine dye added to acetic acid (AI chromoendoscopy) in delineating differentiated or undifferentiated adenocarcinomas in patients with EGC.</p> <p>Methods</p> <p>We prospectively included 151 lesions of 141 patients that had an endoscopic diagnosis of EGC. All the lesions were examined by conventional endoscopy and AI chromoendoscopy before ESD or laparoscopic gastrectomy. The border clarification between the lesion and the normal mucosa was classified as distinct or indistinct before and after AI chromoendoscopy.</p> <p>Results</p> <p>The borders of the lesions were distinct in 66.9% (101/151) with conventional endoscopy and in 84.1% (127/151) with AI chromoendoscopy (<it>P </it>< 0.001). Compared with conventional endoscopy, AI chromoendoscopy clarified the border in a significantly higher percentage of differentiated adenocarcinomas (74/108 [68.5%] vs 97/108 [89.8%], respectively, <it>P </it>< 0.001). However, the border clarification rate for undifferentiated adenocarcinomas did not differ between conventional endoscopy and AI chromoendoscopy (27/43 [62.8%] vs 30/43 [70.0%], respectively, <it>P </it>= 0.494).</p> <p>Conclusions</p> <p>AI chromoendoscopy is useful in determining the lateral extent of EGCs. However, its usefulness is reduced in undifferentiated adenocarcinomas.</p

    Anyonic physical observables and spin phase transition

    Full text link
    The quantization of charged matter system coupled to Chern-Simons gauge fields is analyzed in a covariant gauge fixing, and gauge invariant physical anyon operators satisfying fractional statistics are constructed in a symmetric phase, based on Dirac's recipe performed on QED. This method provides us a definite way of identifying physical spectrums free from gauge ambiguity and constructing physical anyon operators under a covariant gauge fixing. We then analyze the statistical spin phase transition in a symmetry-broken phase and show that the Higgs mechanism transmutes an anyon satisfying fractional statistics into a canonical boson, a spin 0 Higgs boson or a topologically massive photon.Comment: 14 pages, added references, a few improvement
    • …
    corecore