519 research outputs found

    Modeling on-grate MSW incineration with experimental validation in a batch incinerator

    Get PDF
    This Article presents a 2-D steady-state model developed for simulating on-grate municipal solid waste incineration, termed GARBED-ss. Gas-solid reactions, gas flow through the porous waste particle bed, conductive, convective, and radiative heat transfer, drying and pyrolysis of the feed, the emission of volatile species, combustion of the pyrolysis gases, the formation and oxidation of char and its gasification by water vapor and carbon dioxide, and the consequent reduction of the bed volume are described in the bed model. The kinetics of the pyrolysis of cellulosic and noncellulosic materials were experimentally derived from experimental measurements. The simulation results provide a deep insight into the various phenomena involved in incineration, for example, the complete consumption of oxygen in a large zone of the bed and a consequent char-gasification zone. The model was successfully validated against experimental measurements in a laboratory batch reactor, using an adapted sister version in a transient regime. © 2010 American Chemical Society

    Thermodynamic study of heavy metals behavior during municipal waste incineration

    Get PDF
    The incineration of municipal solid waste (MSW) contributes significantly to the presence of heavy metals in urban area aerosols. It is thus important to ascertain the quantities and chemical forms of the heavy metals (HM) that are emitted from the incineration plant stacks. The behaviour of HM, which depends strongly on the thermal and chemical environments, was investigated herein with a modelling approach, consisting of several parts. First, a refuse bed combustion model was developed for simulating on-grate MSW incineration. It describes most of the physico-chemical and thermal phenomena occurring during waste combustion. Second, results from the bed model were taken as boundary conditions to perform 3D simulations of the post-combustion zone and of the boiler. The case studied was of the Strasbourg incineration plant. Finally, the local thermal conditions and the local elementary compositions of gas and solid phases obtained from these simulations were used to carry out thermodynamic calculations of the speciation of HM at each point in the incinerator. The results for four metals (Cd, Zn, Pb, Cr) are presented, discussed and compared to available data. Predicted species are in agreement with observations for volatile metals, except lead, whose volatilization seems overestimated

    CSF metabolites associate with CSF tau and improve prediction of Alzheimer's disease status

    Get PDF
    Introduction: Cerebrospinal fluid (CSF) total tau (t-tau) and phosphorylated tau (p-tau) are biomarkers of Alzheimer's disease (AD), yet much is unknown about AD-associated changes in tau metabolism and tau tangle etiology. Methods: We assessed the variation of t-tau and p-tau explained by 38 previously identified CSF metabolites using linear regression models in middle-age controls from the Wisconsin Alzheimer's Disease Research Center, and predicted AD/mild cognitive impairment (MCI) versus an independent set of older controls using metabolites selected by the least absolute shrinkage and selection operator (LASSO). Results: The 38 CSF metabolites explained 70.3% and 75.7% of the variance in t-tau and p-tau, respectively. Of these, seven LASSO-selected metabolites improved the prediction ability of AD/MCI versus older controls (area under the curve score increased from 0.92 to 0.97 and 0.78 to 0.93) compared to the base model. Discussion: These tau-correlated CSF metabolites increase AD/MCI prediction accuracy and may provide insight into tau tangle etiology

    TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    Get PDF
    SiC fiber-bonded ceramics (SA-Tyrannohex: SA-THX) diffusion-bonded with TiCu metallic interlayers were investigated. Thin samples of the ceramics were prepared with a focused ion beam (FIB) and the interfacial microstructure of the prepared samples was studied by transmission electron microscopy (TEM) and scanning TEM (STEM). In addition to conventional microstructure observation, for detailed analysis of reaction compounds in diffusion-bonded area, we performed STEM-EDS measurements and selected area electron diffraction (SAD) experiments. The TEM and STEM experiments revealed the diffusion-bonded area was composed of only one reaction layer, which was characterized by TiC precipitates in Cu-Si compound matrix. This reaction layer was in good contact with the SA-THX substrates, and it is concluded that the joint structure led to the excellent bonding strength

    Soil Microbial Rejuvenation through Soil Resource Recycling as a part of Sustainable Management Programme: A Case Study from Lakhipara Tea Estate, Dooars, West Bengal, India

    Get PDF
    Quest for sustainability in the Indian tea industry starts on a serious note in the backdrop of several key issues such as impact of climate change on crop productivity, higher intensity of pest and diseases, rampant use of agrochemicals, issue of pesticide residues, increasing mandays cost etc. In this difficult time when most of the tea producers are looking for areas for cost curtailment, Goodricke Group Ltd., initiated the Sustainable Management Programme with the objectivity of producing sustainable teas with low pesticide footprint from the year 2014 onwards. The present study was conducted as a part of the above programme, to evaluate the effectiveness of on-farm generated compost towards soil microbial enrichment. Large-scale composting was done using Novcom composting method and end product quality was analyzed as per International Standards. Total N, P, K in the mature compost was 1.97%, 0.75%, and 0.87%, respectively but most important was the presence of self-generated microbial population in the order of 1014–1016 c.f.u. The rate of CO2 evolution, nitrification index and phytotoxicity bioassay value confirmed end product maturity and absence of any toxicity towards root growth. Assessment of Soil development Index (SDI), one year post compost application showed maximum soil development under organic soil management followed by soils receiving integrated soil management whereas nominal variation was documented under conventional soil management. Biological properties of soil were found to play a major contributory role towards variation of SDI value indicating the importance of microbial rejuvenation towards soil quality development

    Age-Related Tau Burden and Cognitive Deficits Are Attenuated in KLOTHO KL-VS Heterozygotes

    Get PDF
    Background: Identification of new genetic variants that modify Alzheimer’s disease (AD) risk will elucidate novel targets for curbing the disease progression or delaying symptom onset. Objective: To examine whether the functionally advantageous KLOTHO gene KL-VS variant attenuates age-related alteration in cerebrospinal fluid (CSF) biomarkers or cognitive function in middle-aged and older adults enriched for AD risk. Methods: Sample included non-demented adults (N = 225, mean age = 63±8, 68% women) from the Wisconsin Registry for Alzheimer’s Prevention and the Wisconsin Alzheimer’s Disease Research Center who were genotyped for KL-VS, underwent CSF sampling and had neuropsychological testing data available proximal to CSF draw. Covariate-adjusted multivariate regression examined relationships between age group (Younger versus Older; mean split at 63 years), AD biomarkers, and neuropsychological performance tapping memory and executive function, and whether these relationships differed between KL-VS non-carriers (KL-VSNC) and heterozygote (KL-VSHET). Results: In the pooled analyses, older age was associated with higher levels of total tau (tTau), phosphorylated tau (pTau), and their respective ratios to amyloid-β (Aβ)42 (ps ≤ 0.002), and with poorer performance on neuropsychological tests (ps ≤ 0.001). In the stratified analyses, KL-VSNC exhibited this age-related pattern of associations with CSF biomarkers (all ps ≤ 0.001), and memory and executive function (ps ≤ 0.003), which were attenuated in KL-VSHET (ps ≥ 0.14). Conclusion: Worse memory and executive function, and higher tau burden with age were attenuated in carriers of a functionally advantageous KLOTHO variant. KL-VS heterozygosity seems to be protective against age-related cognitive and biomolecular alterations that confer risk for AD

    Changes in Optical Properties of Plasmonic Nanoparticles in Cellular Environments are Modulated by Nanoparticle PEGylation and Serum Conditions

    Get PDF
    When plasmonic nanoparticles (NPs) are internalized by cells and agglomerate within intracellular vesicles, their optical spectra can shift and broaden as a result of plasmonic coupling of NPs in close proximity to one another. For such optical changes to be accounted for in the design of plasmonic NPs for light-based biomedical applications, quantitative design relationships between designable factors and spectral shifts need to be established. Here we begin building such a framework by investigating how functionalization of gold NPs (AuNPs) with biocompatible poly(ethylene) glycol (PEG), and the serum conditions in which the NPs are introduced to cells impact the optical changes exhibited by NPs in a cellular context. Utilizing darkfield hyperspectral imaging, we find that PEGylation decreases the spectral shifting and spectral broadening experienced by 100 nm AuNPs following uptake by Sk-Br-3 cells, but up to a 33 ± 12 nm shift in the spectral peak wavelength can still occur. The serum protein-containing biological medium also modulates the spectral changes experienced by cell-exposed NPs through the formation of a protein corona on the surface of NPs that mediates NP interactions with cells: PEGylated AuNPs exposed to cells in serum-free conditions experience greater spectral shifts than in serum-containing environments. Moreover, increased concentrations of serum (10, 25, or 50 %) result in the formation of smaller intracellular NP clusters and correspondingly reduced spectral shifts after 5 and 10 h NP-cell exposure. However, after 24 h, NP cluster size and spectral shifts are comparable and become independent of serum concentration. By elucidating the impact of PEGylation and serum concentration on the spectral changes experienced by plasmonic NPs in cells, this study provides a foundation for the optical engineering of plasmonic NPs for use in biomedical environments

    CSF metabolites associated with biomarkers of Alzheimer’s disease pathology

    Get PDF
    INTRODUCTION: Metabolomics technology facilitates studying associations between small molecules and disease processes. Correlating metabolites in cerebrospinal fluid (CSF) with Alzheimer’s disease (AD) CSF biomarkers may elucidate additional changes that are associated with early AD pathology and enhance our knowledge of the disease. METHODS: The relative abundance of untargeted metabolites was assessed in 161 individuals from the Wisconsin Registry for Alzheimer’s Prevention. A metabolome-wide association study (MWAS) was conducted between 269 CSF metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology, neuronal and synaptic degeneration, and astrocyte or microglial activation and neuroinflammation. Linear mixed-effects regression analyses were performed with random intercepts for sample relatedness and repeated measurements and fixed effects for age, sex, and years of education. The metabolome-wide significance was determined by a false discovery rate threshold of 0.05. The significant metabolites were replicated in 154 independent individuals from then Wisconsin Alzheimer’s Disease Research Center. Mendelian randomization was performed using genome-wide significant single nucleotide polymorphisms from a CSF metabolites genome-wide association study. RESULTS: Metabolome-wide association study results showed several significantly associated metabolites for all the biomarkers except Aβ42/40 and IL-6. Genetic variants associated with metabolites and Mendelian randomization analysis provided evidence for a causal association of metabolites for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid β (Aβ40), α-synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for Aβ40 and α-synuclein. DISCUSSION: This study provides evidence that CSF metabolites are associated with AD-related pathology, and many of these associations may be causal

    Neuropathology-based APOE genetic risk score better quantifies Alzheimer's risk

    Get PDF
    Introduction: Apolipoprotein E (APOE) ε4-carrier status or ε4 allele count are included in analyses to account for the APOE genetic effect on Alzheimer's disease (AD); however, this does not account for protective effects of APOE ε2 or heterogeneous effect of ε2, ε3, and ε4 haplotypes. Methods: We leveraged results from an autopsy-confirmed AD study to generate a weighted risk score for APOE (APOE-npscore). We regressed cerebrospinal fluid (CSF) amyloid and tau biomarkers on APOE variables from the Wisconsin Registry for Alzheimer's Prevention (WRAP), Wisconsin Alzheimer's Disease Research Center (WADRC), and Alzheimer's Disease Neuroimaging Initiative (ADNI). Results: The APOE-npscore explained more variance and provided a better model fit for all three CSF measures than APOE ε4-carrier status and ε4 allele count. These findings were replicated in ADNI and observed in subsets of cognitively unimpaired (CU) participants. Discussion: The APOE-npscore reflects the genetic effect on neuropathology and provides an improved method to account for APOE in AD-related analyses
    • …
    corecore